0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Statistical Inference - The Minimum Distance Approach (Paperback): Ayanendranath Basu, Hiroyuki Shioya, Chanseok Park Statistical Inference - The Minimum Distance Approach (Paperback)
Ayanendranath Basu, Hiroyuki Shioya, Chanseok Park
R1,385 Discovery Miles 13 850 Ships in 12 - 17 working days

In many ways, estimation by an appropriate minimum distance method is one of the most natural ideas in statistics. However, there are many different ways of constructing an appropriate distance between the data and the model: the scope of study referred to by "Minimum Distance Estimation" is literally huge. Filling a statistical resource gap, Statistical Inference: The Minimum Distance Approach comprehensively overviews developments in density-based minimum distance inference for independently and identically distributed data. Extensions to other more complex models are also discussed. Comprehensively covering the basics and applications of minimum distance inference, this book introduces and discusses: The estimation and hypothesis testing problems for both discrete and continuous models The robustness properties and the structural geometry of the minimum distance methods The inlier problem and its possible solutions, and the weighted likelihood estimation problem The extension of the minimum distance methodology in interdisciplinary areas, such as neural networks and fuzzy sets, as well as specialized models and problems, including semi-parametric problems, mixture models, grouped data problems, and survival analysis. Statistical Inference: The Minimum Distance Approach gives a thorough account of density-based minimum distance methods and their use in statistical inference. It covers statistical distances, density-based minimum distance methods, discrete and continuous models, asymptotic distributions, robustness, computational issues, residual adjustment functions, graphical descriptions of robustness, penalized and combined distances, weighted likelihood, and multinomial goodness-of-fit tests. This carefully crafted resource is useful to researchers and scientists within and outside the statistics arena.

Statistical Inference - The Minimum Distance Approach (Hardcover): Ayanendranath Basu, Hiroyuki Shioya, Chanseok Park Statistical Inference - The Minimum Distance Approach (Hardcover)
Ayanendranath Basu, Hiroyuki Shioya, Chanseok Park
R4,587 Discovery Miles 45 870 Ships in 12 - 17 working days

In many ways, estimation by an appropriate minimum distance method is one of the most natural ideas in statistics. However, there are many different ways of constructing an appropriate distance between the data and the model: the scope of study referred to by "Minimum Distance Estimation" is literally huge. Filling a statistical resource gap, Statistical Inference: The Minimum Distance Approach comprehensively overviews developments in density-based minimum distance inference for independently and identically distributed data. Extensions to other more complex models are also discussed.

Comprehensively covering the basics and applications of minimum distance inference, this book introduces and discusses:

  • The estimation and hypothesis testing problems for both discrete and continuous models
  • The robustness properties and the structural geometry of the minimum distance methods
  • The inlier problem and its possible solutions, and the weighted likelihood estimation problem
  • The extension of the minimum distance methodology in interdisciplinary areas, such as neural networks and fuzzy sets, as well as specialized models and problems, including semi-parametric problems, mixture models, grouped data problems, and survival analysis.

Statistical Inference: The Minimum Distance Approach gives a thorough account of density-based minimum distance methods and their use in statistical inference. It covers statistical distances, density-based minimum distance methods, discrete and continuous models, asymptotic distributions, robustness, computational issues, residual adjustment functions, graphical descriptions of robustness, penalized and combined distances, weighted likelihood, and multinomial goodness-of-fit tests. This carefully crafted resource is useful to researchers and scientists within and outside the statistics arena.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Emily Hobhouse - Beloved traitor
Elsabe Brits Paperback  (3)
R495 R425 Discovery Miles 4 250
Resisting Carceral Violence - Women's…
Bree Carlton, Emma K. Russell Hardcover R3,061 Discovery Miles 30 610
Women of China - Economic and Social…
J. West, M. Zhao, … Hardcover R2,795 Discovery Miles 27 950
Feminism and Avant-Garde Aesthetics in…
Khanna Hardcover R2,258 R1,823 Discovery Miles 18 230
Feminist Social and Political Theory…
Janice McLaughlin Hardcover R4,694 Discovery Miles 46 940
Miss Behave
Malebo Sephodi Paperback  (12)
R277 Discovery Miles 2 770
No Longer Whispering To Power - The…
Thandeka Gqubule Paperback  (8)
R495 Discovery Miles 4 950
One Hand Tied Behind Us - Rise of the…
Jill Liddington, Jill Norris Hardcover R506 Discovery Miles 5 060
Writing on the Wall - Selected Essays
Patricia Duncker Hardcover R954 Discovery Miles 9 540
Identity Politics in the Women's…
Barbara Ryan Hardcover R2,602 Discovery Miles 26 020

 

Partners