Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This text gives a rigorous treatment of the foundations of calculus. In contrast to more traditional approaches, infinite sequences and series are placed at the forefront. The approach taken has not only the merit of simplicity, but students are well placed to understand and appreciate more sophisticated concepts in advanced mathematics. The authors mitigate potential difficulties in mastering the material by motivating definitions, results and proofs. Simple examples are provided to illustrate new material and exercises are included at the end of most sections. Noteworthy topics include: an extensive discussion of convergence tests for infinite series, Wallis's formula and Stirling's formula, proofs of the irrationality of and e and a treatment of Newton's method as a special instance of finding fixed points of iterated functions.
This is not a traditional work on topological graph theory. No current graph or voltage graph adorns its pages. Its readers will not compute the genus (orientable or non-orientable) of a single non-planar graph. Their muscles will not flex under the strain of lifting walks from base graphs to derived graphs. What is it, then? It is an attempt to place topological graph theory on a purely combinatorial yet rigorous footing. The vehicle chosen for this purpose is the con cept of a 3-graph, which is a combinatorial generalisation of an imbedding. These properly edge-coloured cubic graphs are used to classify surfaces, to generalise the Jordan curve theorem, and to prove Mac Lane's characterisation of planar graphs. Thus they playa central role in this book, but it is not being suggested that they are necessarily the most effective tool in areas of topological graph theory not dealt with in this volume. Fruitful though 3-graphs have been for our investigations, other jewels must be examined with a different lens. The sole requirement for understanding the logical development in this book is some elementary knowledge of vector spaces over the field Z2 of residue classes modulo 2. Groups are occasionally mentioned, but no expertise in group theory is required. The treatment will be appreciated best, however, by readers acquainted with topology. A modicum of topology is required in order to comprehend much of the motivation we supply for some of the concepts introduced."
This text provides a detailed presentation of the main results for infinite products, as well as several applications. The target readership is a student familiar with the basics of real analysis of a single variable and a first course in complex analysis up to and including the calculus of residues. The book provides a detailed treatment of the main theoretical results and applications with a goal of providing the reader with a short introduction and motivation for present and future study. While the coverage does not include an exhaustive compilation of results, the reader will be armed with an understanding of infinite products within the course of more advanced studies, and, inspired by the sheer beauty of the mathematics. The book will serve as a reference for students of mathematics, physics and engineering, at the level of senior undergraduate or beginning graduate level, who want to know more about infinite products. It will also be of interest to instructors who teach courses that involve infinite products as well as mathematicians who wish to dive deeper into the subject. One could certainly design a special-topics class based on this book for undergraduates. The exercises give the reader a good opportunity to test their understanding of each section.
|
You may like...
|