0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (3)
  • R5,000 - R10,000 (5)
  • -
Status
Brand

Showing 1 - 8 of 8 matches in All Departments

Proceedings of ELM-2017 (Hardcover, 1st ed. 2019): Jiuwen Cao, Chi Man Vong, Yoan Miche, Amaury Lendasse Proceedings of ELM-2017 (Hardcover, 1st ed. 2019)
Jiuwen Cao, Chi Man Vong, Yoan Miche, Amaury Lendasse
R5,186 Discovery Miles 51 860 Ships in 18 - 22 working days

This book contains some selected papers from the International Conference on Extreme Learning Machine (ELM) 2017, held in Yantai, China, October 4-7, 2017. The book covers theories, algorithms and applications of ELM. Extreme Learning Machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles' filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that "random hidden neurons" capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. This conference will provide a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. It gives readers a glance of the most recent advances of ELM.

Proceedings of ELM 2018 (Hardcover, 1st ed. 2020): Jiuwen Cao, Chi Man Vong, Yoan Miche, Amaury Lendasse Proceedings of ELM 2018 (Hardcover, 1st ed. 2020)
Jiuwen Cao, Chi Man Vong, Yoan Miche, Amaury Lendasse
R5,188 Discovery Miles 51 880 Ships in 18 - 22 working days

This book contains some selected papers from the International Conference on Extreme Learning Machine 2018, which was held in Singapore, November 21-23, 2018. This conference provided a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. Extreme Learning Machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental "learning particles" filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that "random hidden neurons" capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. The main theme of ELM2018 is Hierarchical ELM, AI for IoT, Synergy of Machine Learning and Biological Learning. This book covers theories, algorithms and applications of ELM. It gives readers a glance at the most recent advances of ELM.

Proceedings of ELM2019 (Hardcover, 1st ed. 2021): Jiuwen Cao, Chi Man Vong, Yoan Miche, Amaury Lendasse Proceedings of ELM2019 (Hardcover, 1st ed. 2021)
Jiuwen Cao, Chi Man Vong, Yoan Miche, Amaury Lendasse
R5,143 Discovery Miles 51 430 Ships in 18 - 22 working days

This book contains some selected papers from the International Conference on Extreme Learning Machine 2019, which was held in Yangzhou, China, December 14-16, 2019. Extreme Learning Machines (ELMs) aim to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental 'learning particles' filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that "random hidden neurons" capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. The main theme of ELM2019 is Hierarchical ELM, AI for IoT, Synergy of Machine Learning and Biological Learning. This conference provides a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. This book covers theories, algorithms and applications of ELM. It gives readers a glance of the most recent advances of ELM.

Proceedings of ELM-2016 (Hardcover, 1st ed. 2018): Jiuwen Cao, Erik Cambria, Amaury Lendasse, Yoan Miche, Chi Man Vong Proceedings of ELM-2016 (Hardcover, 1st ed. 2018)
Jiuwen Cao, Erik Cambria, Amaury Lendasse, Yoan Miche, Chi Man Vong
R5,013 R4,692 Discovery Miles 46 920 Save R321 (6%) Ships in 10 - 15 working days

This book contains some selected papers from the International Conference on Extreme Learning Machine 2016, which was held in Singapore, December 13-15, 2016. This conference will provide a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. Extreme Learning Machines (ELM) aims to break the barriers between the conventional artificial learning techniques and biological learning mechanism. ELM represents a suite of (machine or possibly biological) learning techniques in which hidden neurons need not be tuned. ELM learning theories show that very effective learning algorithms can be derived based on randomly generated hidden neurons (with almost any nonlinear piecewise activation functions), independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that "random hidden neurons" capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. ELM offers significant advantages over conventional neural network learning algorithms such as fast learning speed, ease of implementation, and minimal need for human intervention. ELM also shows potential as a viable alternative technique for large-scale computing and artificial intelligence. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM.

Proceedings of ELM2019 (Paperback, 1st ed. 2021): Jiuwen Cao, Chi Man Vong, Yoan Miche, Amaury Lendasse Proceedings of ELM2019 (Paperback, 1st ed. 2021)
Jiuwen Cao, Chi Man Vong, Yoan Miche, Amaury Lendasse
R3,756 Discovery Miles 37 560 Ships in 18 - 22 working days

This book contains some selected papers from the International Conference on Extreme Learning Machine 2019, which was held in Yangzhou, China, December 14-16, 2019. Extreme Learning Machines (ELMs) aim to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental 'learning particles' filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that "random hidden neurons" capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. The main theme of ELM2019 is Hierarchical ELM, AI for IoT, Synergy of Machine Learning and Biological Learning. This conference provides a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. This book covers theories, algorithms and applications of ELM. It gives readers a glance of the most recent advances of ELM.

Proceedings of ELM 2018 (Paperback, 1st ed. 2020): Jiuwen Cao, Chi Man Vong, Yoan Miche, Amaury Lendasse Proceedings of ELM 2018 (Paperback, 1st ed. 2020)
Jiuwen Cao, Chi Man Vong, Yoan Miche, Amaury Lendasse
R5,160 Discovery Miles 51 600 Ships in 18 - 22 working days

This book contains some selected papers from the International Conference on Extreme Learning Machine 2018, which was held in Singapore, November 21-23, 2018. This conference provided a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. Extreme Learning Machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental "learning particles" filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that "random hidden neurons" capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. The main theme of ELM2018 is Hierarchical ELM, AI for IoT, Synergy of Machine Learning and Biological Learning. This book covers theories, algorithms and applications of ELM. It gives readers a glance at the most recent advances of ELM.

Proceedings of ELM-2017 (Paperback, Softcover reprint of the original 1st ed. 2019): Jiuwen Cao, Chi Man Vong, Yoan Miche,... Proceedings of ELM-2017 (Paperback, Softcover reprint of the original 1st ed. 2019)
Jiuwen Cao, Chi Man Vong, Yoan Miche, Amaury Lendasse
R5,158 Discovery Miles 51 580 Ships in 18 - 22 working days

This book contains some selected papers from the International Conference on Extreme Learning Machine (ELM) 2017, held in Yantai, China, October 4-7, 2017. The book covers theories, algorithms and applications of ELM. Extreme Learning Machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles' filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that "random hidden neurons" capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. This conference will provide a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. It gives readers a glance of the most recent advances of ELM.

Proceedings of ELM-2016 (Paperback, Softcover reprint of the original 1st ed. 2018): Jiuwen Cao, Erik Cambria, Amaury Lendasse,... Proceedings of ELM-2016 (Paperback, Softcover reprint of the original 1st ed. 2018)
Jiuwen Cao, Erik Cambria, Amaury Lendasse, Yoan Miche, Chi Man Vong
R4,757 Discovery Miles 47 570 Ships in 18 - 22 working days

This book contains some selected papers from the International Conference on Extreme Learning Machine 2016, which was held in Singapore, December 13-15, 2016. This conference will provide a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. Extreme Learning Machines (ELM) aims to break the barriers between the conventional artificial learning techniques and biological learning mechanism. ELM represents a suite of (machine or possibly biological) learning techniques in which hidden neurons need not be tuned. ELM learning theories show that very effective learning algorithms can be derived based on randomly generated hidden neurons (with almost any nonlinear piecewise activation functions), independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that "random hidden neurons" capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. ELM offers significant advantages over conventional neural network learning algorithms such as fast learning speed, ease of implementation, and minimal need for human intervention. ELM also shows potential as a viable alternative technique for large-scale computing and artificial intelligence. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Lifespace Quality Silicone Black Pot…
R139 R59 Discovery Miles 590
Elegant Choker Necklace
R570 R399 Discovery Miles 3 990
Adidas Hybrid 25 Boxing Gloves (Red)
R491 R409 Discovery Miles 4 090
Sony PlayStation 5 DualSense Wireless…
R1,654 Discovery Miles 16 540
Transcend MTE110 TS128GMTE110S Internal…
 (1)
R849 R670 Discovery Miles 6 700
Rare
Selena Gomez CD R166 R134 Discovery Miles 1 340
Dala A2 Sketch Pad (120gsm)(36 Sheets)
R285 R240 Discovery Miles 2 400
Asus ZenScreen MB16ACV 15.6" FHD IPS…
R5,999 R5,399 Discovery Miles 53 990
Karcher Fleece Filter Bags KFI 357
R242 Discovery Miles 2 420
Venom 2: Let There Be Carnage
Tom Hardy, Woody Harrelson, … DVD R210 Discovery Miles 2 100

 

Partners