Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 30 matches in All Departments
Advances in telemedicine technologies have offered clinicians greater levels of real-time guidance and technical assistance for diagnoses, monitoring, operations or interventions from colleagues based in remote locations. The topic includes the use of videoconferencing, mentorship during surgical procedures, or machine-to-machine communication to process data from one location by programmes running in another. This edited book presents a variety of technologies with applications in telemedicine, originating from the fields of biomedical sensors, wireless sensor networking, computer-aided diagnosis methods, signal and image processing and analysis, automation and control, virtual and augmented reality, multivariate analysis, and data acquisition devices. The Internet of Medical Things (IoMT), surgical robots, telemonitoring, and teleoperation systems are also explored, as well as the associated security and privacy concerns in this field. Topics covered include critical factors in the development, implementation and evaluation of telemedicine; surgical tele-mentoring; technologies in medical information processing; recent advances of signal/image processing techniques in healthcare; a real-time ECG processing platform for telemedicine applications; data mining in telemedicine; social work and tele-mental health services for rural and remote communities; applying telemedicine to social work practice and education; advanced telemedicine systems for remote healthcare monitoring; the impact of tone-mapping operators and viewing devices on visual quality of experience of colour and grey-scale HDR images; modelling the relationships between changes in EEG features and subjective quality of HDR images; IoMT and healthcare delivery in chronic diseases; and transform domain robust watermarking method using Riesz wavelet transform for medical data security and privacy.
Medical and information communication technology professionals are working to develop robust classification techniques, especially in healthcare data/image analysis, to ensure quick diagnoses and treatments to patients. Without fast and immediate access to healthcare databases and information, medical professionals' success rates and treatment options become limited and fall to disastrous levels. Advanced Classification Techniques for Healthcare Analysis provides emerging insight into classification techniques in delivering quality, accurate, and affordable healthcare, while also discussing the impact health data has on medical treatments. Featuring coverage on a broad range of topics such as early diagnosis, brain-computer interface, metaheuristic algorithms, clustering techniques, learning schemes, and mobile telemedicine, this book is ideal for medical professionals, healthcare administrators, engineers, researchers, academicians, and technology developers seeking current research on furthering information and communication technology that improves patient care.
Smart healthcare technology improves the diagnosis and treatment of patients, provides easy access to medical facilities and emergency care services, and minimizes the gaps between patients and healthcare providers. While clinical data protection remains a major challenge, innovations such as the internet of medical things and smart healthcare systems increase the efficiency and quality of patient care. Healthcare technology can only become faster, more profitable, and more flexible as additional research on its advancements is conducted and collected. Smart Medical Data Sensing and IoT Systems Design in Healthcare is an essential reference source that focuses on robust and easy solutions for the delivery of medical information from patients to doctors and explores low-cost, high-performance, highly efficient, deployable IoT system options in healthcare systems. Featuring research on topics such as hospital management systems, electronic health records, and bio-signals, this book is ideally designed for technologists, engineers, scientists, clinicians, biomedical engineers, hospital directors, doctors, nurses, healthcare practitioners, telemedical agents, students, and academicians seeking coverage on the latest technological developments in medical data analysis and connectivity.
This book covers COVID-19 related research works and focuses on recent advances in the Internet of Things (IoT) in smart healthcare technologies. It includes reviews and original works on COVID-19 in terms of e-healthcare, medicine technology, life support systems, fast detection, diagnoses, developed technologies and innovative solutions, bioinformatics, datasets, apps for diagnosis, solutions for monitoring and control of the spread of COVID-19, among other topics. The book covers comprehensive studies from bioelectronics and biomedical engineering, artificial intelligence, and big data with a prime focus on COVID-19 pandemic.
This book provides information on data-driven infrastructure design, analytical approaches, and technological solutions with case studies for smart cities. This book aims to attract works on multidisciplinary research spanning across the computer science and engineering, environmental studies, services, urban planning and development, social sciences and industrial engineering on technologies, case studies, novel approaches, and visionary ideas related to data-driven innovative solutions and big data-powered applications to cope with the real world challenges for building smart cities.
This book focuses on recent advances in the Internet of Things (IoT) in biomedical and healthcare technologies, presenting theoretical, methodological, well-established, and validated empirical work in these fields. Artificial intelligence and IoT are set to revolutionize all industries, but perhaps none so much as health care. Both biomedicine and machine learning applications are capable of analyzing data stored in national health databases in order to identify potential health problems, complications and effective protocols, and a range of wearable devices for biomedical and healthcare applications far beyond tracking individuals' steps each day has emerged. These prosthetic technologies have made significant strides in recent decades with the advances in materials and development. As a result, more flexible, more mobile chip-enabled prosthetics or other robotic devices are on the horizon. For example, IoT-enabled wireless ECG sensors that reduce healthcare cost, and lead to better quality of life for cardiac patients. This book focuses on three current trends that are likely to have a significant impact on future healthcare: Advanced Medical Imaging and Signal Processing; Biomedical Sensors; and Biotechnological and Healthcare Advances. It also presents new methods of evaluating medical data, and diagnosing diseases in order to improve general quality of life.
Offers important key aspects in the development and implementation of ML and DL approaches toward developing prediction tools and models and improving medical diagnosis Teaches how ML and DL algorithms are applied to a broad range of application areas, including chest x-ray, breast CAD, lung and chest, microscopy, and pathology and so forth Covers common research problems in medical image analysis and their challenges Focusses on aspects of deep learning and machine learning for combating COVID-19 Includes pertinent case studies
This book promotes and facilitates exchanges of research knowledge and findings across different disciplines on the design and investigation of machine learning-based data analytics of IoT infrastructures. This book is focused on the emerging trends, strategies, and applications of IoT in both healthcare and industry data analytics perspectives. The data analytics discussed are relevant for healthcare and industry to meet many technical challenges and issues that need to be addressed to realize this potential. The IoT discussed helps to design and develop the intelligent medical and industry solutions assisted by data analytics and machine learning. At the end of every chapter readers are encouraged to check their understanding by means of brainstorming summary, discussion, exercises and solutions.
This book examines the use of biomedical signal processing—EEG, EMG, and ECG—in analyzing and diagnosing various medical conditions, particularly diseases related to the heart and brain. In combination with machine learning tools and other optimization methods, the analysis of biomedical signals greatly benefits the healthcare sector by improving patient outcomes through early, reliable detection. The discussion of these modalities promotes better understanding, analysis, and application of biomedical signal processing for specific diseases. The major highlights of Biomedical Signal Processing for Healthcare Applications include biomedical signals, acquisition of signals, pre-processing and analysis, post-processing and classification of the signals, and application of analysis and classification for the diagnosis of brain- and heart-related diseases. Emphasis is given to brain and heart signals because incomplete interpretations are made by physicians of these aspects in several situations, and these partial interpretations lead to major complications. FEATURES Examines modeling and acquisition of biomedical signals of different disorders Discusses CAD-based analysis of diagnosis useful for healthcare Includes all important modalities of biomedical signals, such as EEG, EMG, MEG, ECG, and PCG Includes case studies and research directions, including novel approaches used in advanced healthcare systems This book can be used by a wide range of users, including students, research scholars, faculty, and practitioners in the field of biomedical engineering and medical image analysis and diagnosis.
The book Intelligent Healthcare: Infrastructure, Algorithms, and Management (R) cover a wide range of research topics on innovative intelligent healthcare solutions and advancements with the latest research developments. Data analytics are relevant for healthcare to meet many technical challenges and issues that need to be addressed to realize this potential. The advanced healthcare systems have to be upgraded with new capabilities such as data analytics, machine learning, intelligent decision making, and more professional services. The Internet of Things helps to design and develop intelligent healthcare solutions assisted by security, data analytics, and machine learning.This book will provide federated learning, Data-driven infrastructure design, analytical approaches, and technological solutions with case studies for smart healthcare. This book aims to attract works on multidisciplinary research spanning across computer science and engineering, environmental studies, services, urban planning and development, Healthcare, social sciences, and industrial engineering on technologies, case studies, novel approaches, and visionary ideas related to data-driven innovative learning and computing solutions and big medical data-powered applications to cope with the real-world challenges for building smart healthcare sectors. Main Features: O Immersive technologies in healthcare O Internet of medical things O Federated learning algorithms O Explainable AI in Pervasive Healthcare O New management principles using biomedical data O Secured healthcare management systems This book aims to set up a better understanding of data scientists, researchers, and technologists under innovative digital health. The reader can find out existing research challenges, current market trends, and low-cost technologies to smoothly address the digital health issue.
Focusses on prospective scenarios in health to foresight possible futures Addresses the urgent needs of the key population, socio-technical, and health themes Covers health innovative practices as 3D models for surgeries, big data to treat rare diseases, AI robot for heart treatments Explores telemedicine using big data, deep learning, robotics, mobile and remote applications Reviews public health based on predictive analytics and disease trends
Focuses on the Internet of Healthcare Things and innovative solutions developed for use in the application of healthcare services Discusses artificial intelligence applications, experiments, core concepts, and cutting-edge themes Demonstrates new approaches to analysing medical data and identifying ailments using AI to improve overall quality of life Introduces fundamental concepts for designing the Internet of Healthcare Things solutions Includes pertinent case studies and applications
This book presents innovative solutions utilising informatics to deal with various issues related to the COVID-19 outbreak. The book offers a collection of contemporary research and development on the management of Covid-19 using health data analytics, information exchange, knowledge sharing, the Internet of Things (IoT), and the Internet of Everything (IoE)-based solutions. The book also analyses the implementation, assessment, adoption, and management of these healthcare informatics solutions to manage the pandemic and future epidemics. The book is relevant to researchers, professors, students, and professionals in informatics and related topics.
The book Digital Health Transformation with Blockchain and Artificial Intelligence covers the global digital revolution in the field of healthcare sector. The population has been overcoming the COVID-19 period; therefore, we need to establish intelligent digital healthcare systems using various emerging technologies like Blockchain and Artificial Intelligence. Internet of Medical Things is the technological revolution that has included the element of "smartness" in the healthcare industry and also identifying, monitoring, and informing service providers about the patient's clinical information with faster delivery of care services. This book highlights the important issues i.e. (a) How Internet of things can be integrated with the healthcare ecosystem for better diagnostics, monitoring, and treatment of the patients, (b) Artificial Intelligence for predictive and preventive healthcare systems, (c) Blockchain for managing healthcare data to provide transparency, security, and distributed storage, and (d) Effective remote diagnostics and telemedicine approach for developing smart care. The book encompasses chapters belong to the blockchain, Artificial Intelligence, and Big health data technologies. Features: Blockchain and internet of things in healthcare systems Secure Digital Health Data Management in Internet of Things Public Perception towards AI-Driven Healthcare Security, privacy issues and challenges in adoption of smart digital healthcare Big data analytics and Internet of things in the pandemic era Clinical challenges for digital health revolution Artificial intelligence for advanced healthcare Future Trajectory of Healthcare with Artificial Intelligence 9 Parkinson disease pre-diagnosis using smart technologies Emerging technologies to combat the COVID-19 Machine Learning and Internet of Things in Digital Health Transformation Effective Remote Healthcare and Telemedicine Approaches Legal implication of blockchain technology in public health This Book on "Digital Health Transformation with Blockchain and Artificial Intelligence" aims at promoting and facilitating exchanges of research knowledge and findings across different disciplines on the design and investigation of secured healthcare data analytics. It can also be used as a textbook for a Masters course in security and biomedical engineering. This book will also present new methods for the medical data analytics, blockchain technology, and diagnosis of different diseases to improve the quality of life in general, and better integration into digital healthcare.
This book provides an overview of distributed control and distributed optimization theory, followed by specific details on industrial applications to smart grid systems. It discusses the fundamental analysis and design schemes for developing actual working smart grids and covers all aspects concerning the conventional and nonconventional methods of their use. Hybrid Intelligence for Smart Grid Systems provides an overview of a smart grid, along with its needs, benefits, challenges, and existing structure and describes the inverter topologies adopted for integrating renewable power, and provides an overview of its needs, benefits, challenges, and possible future technologies. This pioneering book is a must-read for researchers, engineering professionals, and students, giving them the tools needed to move from the concept of a smart grid to its actual design and implementation. Moreover, it will enable regulators, policymakers, and energy executives to understand the future of energy delivery systems towards safe, economical, high-quality power delivery in a dynamic and demanding environment.
The book Security of Internet of Things Nodes: Challenges, Attacks, and Countermeasures (R) covers a wide range of research topics on the security of the Internet of Things nodes along with the latest research development in the domain of Internet of Things. It also covers various algorithms, techniques, and schemes in the field of computer science with state-of-the-art tools and technologies. This book mainly focuses on the security challenges of the Internet of Things devices and the countermeasures to overcome security vulnerabilities. Also, it highlights trust management issues on the Internet of Things nodes to build secured Internet of Things systems. The book also covers the necessity of a system model for the Internet of Things devices to ensure security at the hardware level.
This book examines the use of biomedical signal processing-EEG, EMG, and ECG-in analyzing and diagnosing various medical conditions, particularly diseases related to the heart and brain. In combination with machine learning tools and other optimization methods, the analysis of biomedical signals greatly benefits the healthcare sector by improving patient outcomes through early, reliable detection. The discussion of these modalities promotes better understanding, analysis, and application of biomedical signal processing for specific diseases. The major highlights of Biomedical Signal Processing for Healthcare Applications include biomedical signals, acquisition of signals, pre-processing and analysis, post-processing and classification of the signals, and application of analysis and classification for the diagnosis of brain- and heart-related diseases. Emphasis is given to brain and heart signals because incomplete interpretations are made by physicians of these aspects in several situations, and these partial interpretations lead to major complications. FEATURES Examines modeling and acquisition of biomedical signals of different disorders Discusses CAD-based analysis of diagnosis useful for healthcare Includes all important modalities of biomedical signals, such as EEG, EMG, MEG, ECG, and PCG Includes case studies and research directions, including novel approaches used in advanced healthcare systems This book can be used by a wide range of users, including students, research scholars, faculty, and practitioners in the field of biomedical engineering and medical image analysis and diagnosis.
Green Computing and Predictive Analytics for Healthcare excavates the rudimentary concepts of Green Computing, Big Data and the Internet of Things along with the latest research development in the domain of healthcare. It also covers various applications and case studies in the field of computer science with state-of-the-art tools and technologies. The rapid growth of the population is a challenging issue in maintaining and monitoring various experiences of quality of service in healthcare. The coherent usage of these limited resources in connection with optimum energy consumption has been becoming more important. The major healthcare nodes are gradually becoming Internet of Things-enabled, and sensors, work data and the involvement of networking are creating smart campuses and smart houses. The book includes chapters on the Internet of Things and Big Data technologies. Features: Biomedical data monitoring under the Internet of Things Environment data sensing and analyzing Big data analytics and clustering Machine learning techniques for sudden cardiac death prediction Robust brain tissue segmentation Energy-efficient and green Internet of Things for healthcare applications Blockchain technology for the healthcare Internet of Things Advanced healthcare for domestic medical tourism system Edge computing for data analytics This book on Green Computing and Predictive Analytics for Healthcare aims to promote and facilitate the exchange of research knowledge and findings across different disciplines on the design and investigation of healthcare data analytics. It can also be used as a textbook for a master's course in biomedical engineering. This book will also present new methods for medical data evaluation and the diagnosis of different diseases to improve quality-of-life in general and for better integration of Internet of Things into society. Dr. Sourav Banerjee is an Assistant Professor at the Department of Computer Science and Engineering of Kalyani Government Engineering College, Kalyani, West Bengal, India. His research interests include Big Data, Cloud Computing, Distributed Computing and Mobile Communications. Dr. Chinmay Chakraborty is an Assistant Professor at the Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, India. His main research interests include the Internet of Medical Things, WBAN, Wireless Networks, Telemedicine, m-Health/e-Health and Medical Imaging. Dr. Kousik Dasgupta is an Assistant Professor at the Department of Computer Science and Engineering, Kalyani Government Engineering College, India. His research interests include Computer Vision, AI/ML, Cloud Computing, Big Data and Security.
Provides detailed introduction to Internet of Healthcare Things (IoHT) and its applications Reviews underlying sensor and hardware technologies Includes recent advances in the IoHT such as remote healthcare monitoring and wearable devices Explores applications of Data Analytics/Data Mining in IoHT, including data management and data governance Focusses on regulatory and compliance issues in IoHT
Smart Health Technologies for the COVID-19 Pandemic: Internet of medical things perspectives looks at the role technology has played to monitor, map and fight the global COVID-19 pandemic. Chapters outline risk assessment methodologies and social distancing and infection control technologies in the face of this disease outbreak. The applications of Big Data and artificial intelligence in the fight against the spread of COVID-19 are explored in this edited book, as well as advances in early diagnostic testing and remote monitoring systems, and blockchain-based solutions for secure data handling. The implementation of machine learning for reviewing and analysing biomedical data and assisting with drug design is also discussed. Emphasising the vital role that intelligent advanced healthcare informatics has played during this crucial time, this book is a valuable resource for researchers in the fields of biomedical engineering, bioengineering, electronics engineering, health informatics, wireless body area networks (WBAN), data analytics, telemedicine, and those in related fields.
This book proposal deals with the emerging advances in Artificial Intelligence and the Fourth Industrial Revolution taking place around the world right now and likely to change the face of healthcare in both the short- and long-term future. Seeks out theoretical, methodological, well-established and validated empirical work dealing with these different topics, in depth experimental or application aspect focused on relevant topics instead of giving an overview on the entire spectrum. The editors are expert in the field with proven track record.
This book covers COVID-19 related research works and focuses on recent advances in the Internet of Things (IoT) in smart healthcare technologies. It includes reviews and original works on COVID-19 in terms of e-healthcare, medicine technology, life support systems, fast detection, diagnoses, developed technologies and innovative solutions, bioinformatics, datasets, apps for diagnosis, solutions for monitoring and control of the spread of COVID-19, among other topics. The book covers comprehensive studies from bioelectronics and biomedical engineering, artificial intelligence, and big data with a prime focus on COVID-19 pandemic.
This book focuses on recent advances and different research areas in multi-modal data fusion under healthcare informatics and seeks out theoretical, methodological, well-established and validated empirical work dealing with these different topics. This book brings together the latest industrial and academic progress, research, and development efforts within the rapidly maturing health informatics ecosystem. Contributions highlight emerging data fusion topics that support prospective healthcare applications. The book also presents various technologies and concerns regarding energy aware and secure sensors and how they can reduce energy consumption in health care applications. It also discusses the life cycle of sensor devices and protocols with the help of energy-aware design, production, and utilization, as well as the Internet of Things technologies such as tags, sensors, sensing networks, and Internet technologies. In a nutshell, this book gives a comprehensive overview of the state-of-the-art theories and techniques for massive data handling and access in medical data and smart health in IoT, and provides useful guidelines for the design of massive Internet of Medical Things.
This book focuses on recent advances in the Internet of Things (IoT) in biomedical and healthcare technologies, presenting theoretical, methodological, well-established, and validated empirical work in these fields. Artificial intelligence and IoT are set to revolutionize all industries, but perhaps none so much as health care. Both biomedicine and machine learning applications are capable of analyzing data stored in national health databases in order to identify potential health problems, complications and effective protocols, and a range of wearable devices for biomedical and healthcare applications far beyond tracking individuals' steps each day has emerged. These prosthetic technologies have made significant strides in recent decades with the advances in materials and development. As a result, more flexible, more mobile chip-enabled prosthetics or other robotic devices are on the horizon. For example, IoT-enabled wireless ECG sensors that reduce healthcare cost, and lead to better quality of life for cardiac patients. This book focuses on three current trends that are likely to have a significant impact on future healthcare: Advanced Medical Imaging and Signal Processing; Biomedical Sensors; and Biotechnological and Healthcare Advances. It also presents new methods of evaluating medical data, and diagnosing diseases in order to improve general quality of life.
This book provides information on data-driven infrastructure design, analytical approaches, and technological solutions with case studies for smart cities. This book aims to attract works on multidisciplinary research spanning across the computer science and engineering, environmental studies, services, urban planning and development, social sciences and industrial engineering on technologies, case studies, novel approaches, and visionary ideas related to data-driven innovative solutions and big data-powered applications to cope with the real world challenges for building smart cities. |
You may like...
|