![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This timely book exposes succinctly recent advances in the geometric and analytic theory of bounded symmetric domains. A unique feature is the unified treatment of both finite and infinite dimensional symmetric domains, using Jordan theory in tandem with Lie theory. The highlights include a generalized Riemann mapping theorem, which realizes a bounded symmetric domain as the open unit ball of a complex Banach space with a Jordan structure. Far-reaching applications of this realization in complex geometry and function theory are discussed.This monograph is intended as a convenient reference for researchers and graduate students in geometric analysis, infinite dimensional holomorphy as well as functional analysis and operator theory.
Jordan theory has developed rapidly in the last three decades, but very few books describe its diverse applications. Here, the author discusses some recent advances of Jordan theory in differential geometry, complex and functional analysis, with the aid of numerous examples and concise historical notes. These include: the connection between Jordan and Lie theory via the Tits-Kantor-Koecher construction of Lie algebras; a Jordan algebraic approach to infinite dimensional symmetric manifolds including Riemannian symmetric spaces; the one-to-one correspondence between bounded symmetric domains and JB*-triples; and applications of Jordan methods in complex function theory. The basic structures and some functional analytic properties of JB*-triples are also discussed. The book is a convenient reference for experts in complex geometry or functional analysis, as well as an introduction to these areas for beginning researchers. The recent applications of Jordan theory discussed in the book should also appeal to algebraists.
In the last decade, convolution operators of matrix functions have received unusual attention due to their diverse applications. This monograph presents some new developments in the spectral theory of these operators. The setting is the Lp spaces of matrix-valued functions on locally compact groups. The focus is on the spectra and eigenspaces of convolution operators on these spaces, defined by matrix-valued measures. Among various spectral results, the L2-spectrum of such an operator is completely determined and as an application, the spectrum of a discrete Laplacian on a homogeneous graph is computed using this result. The contractivity properties of matrix convolution semigroups are studied and applications to harmonic functions on Lie groups and Riemannian symmetric spaces are discussed. An interesting feature is the presence of Jordan algebraic structures in matrix-harmonic functions.
This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)R271 Discovery Miles 2 710
|