Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Algebraic graph theory is a fascinating subject concerned with the interplay between algebra and graph theory. Algebraic tools can be used to give surprising and elegant proofs of graph theoretic facts, and there are many interesting algebraic objects associated with graphs. The authors take an inclusive view of the subject, and present a wide range of topics. These range from standard classics, such as the characterization of line graphs by eigenvalues, to more unusual areas such as geometric embeddings of graphs and the study of graph homomorphisms. The authors' goal has been to present each topic in a self-contained fashion, presenting the main tools and ideas, with an emphasis on their use in understanding concrete examples. A substantial proportion of the book covers topics that have not appeared in book form before, and as such it provides an accessible introduction to the research literature and to important open questions in modern algebraic graph theory. This book is primarily aimed at graduate students and researchers in graph theory, combinatorics, or discrete mathematics in general. However, all the necessary graph theory is developed from scratch, so the only pre-requisite for reading it is a first course in linear algebra and a small amount of elementary group theory. It should be accessible to motivated upper-level undergraduates. Chris Godsil is a full professor in the Department of Combinatorics and Optimization at the University of Waterloo. His main research interests lie in the interactions between algebra and combinatorics, in particular the application of algebraic techniques to graphs, designs and codes. He has published more than 70 papers in these areas, is a founding editor of "The Journal of Algebraic Combinatorics" and is the author of the book "Algebraic Combinatorics". Gordon Royle teaches in the Department of Computer Science & Software Engineering at the University of Western Australia. His main research interests lie in the application of computers to combinatorial problems, in particular the cataloguing, enumeration and investigation of graphs, designs and finite geometries. He has published more than 30 papers in graph theory, design theory and finite geometry.
This graduate level text is distinguished both by the range of topics and the novelty of the material it treats--more than half of the material in it has previously only appeared in research papers. The first half of this book introduces the characteristic and matchings polynomials of a graph. It is instructive to consider these polynomials together because they have a number of properties in common. The matchings polynomial has links with a number of problems in combinatorial enumeration, particularly some of the current work on the combinatorics of orthogonal polynomials. This connection is discussed at some length, and is also in part the stimulus for the inclusion of chapters on orthogonal polynomials and formal power series. Many of the properties of orthogonal polynomials are derived from properties of characteristic polynomials. The second half of the book introduces the theory of polynomial spaces, which provide easy access to a number of important results in design theory, coding theory and the theory of association schemes. This book should be of interest to second year graduate text/reference in mathematics.
Discrete quantum walks are quantum analogues of classical random walks. They are an important tool in quantum computing and a number of algorithms can be viewed as discrete quantum walks, in particular Grover's search algorithm. These walks are constructed on an underlying graph, and so there is a relation between properties of walks and properties of the graph. This book studies the mathematical problems that arise from this connection, and the different classes of walks that arise. Written at a level suitable for graduate students in mathematics, the only prerequisites are linear algebra and basic graph theory; no prior knowledge of physics is required. The text serves as an introduction to this important and rapidly developing area for mathematicians and as a detailed reference for computer scientists and physicists working on quantum information theory.
With a clear focus on compulsory algebra for undergraduates, Applied Abstract Algebra includes many significant and exciting applications. The author addresses the key topics in algebra while leaving out topics usually covered in advanced courses. This tradeoff allows the book to cover more interesting and realistic applications. The core set of examples and applications are in cryptography, coding theory, linear recurrences, and control theory. Applications include the Advanced Encryption Standard, decoding of BCH codes, and convolutional codes. The material for these topics is developed systematically, allowing students a taste of real-life, cutting edge applications.
|
You may like...
|