0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • -
Status
Brand

Showing 1 - 1 of 1 matches in All Departments

Synopses for Massive Data - Samples, Histograms, Wavelets, Sketches (Paperback): Graham Cormode, Minos Garofalakis, Peter J.... Synopses for Massive Data - Samples, Histograms, Wavelets, Sketches (Paperback)
Graham Cormode, Minos Garofalakis, Peter J. Haas, Chris Jermaine
R2,257 Discovery Miles 22 570 Ships in 10 - 15 working days

Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches describes basic principles and recent developments in building approximate synopses (i.e., lossy, compressed representations) of massive data. Such synopses enable approximate query processing, in which the user's query is executed against the synopsis instead of the original data. The monograph focuses on the four main families of synopses: random samples, histograms, wavelets, and sketches. A random sample comprises a "representative" subset of the data values of interest, obtained via a stochastic mechanism. Samples can be quick to obtain, and can be used to approximately answer a wide range of queries. A histogram summarizes a data set by grouping the data values into subsets, or "buckets," and then, for each bucket, computing a small set of summary statistics that can be used to approximately reconstruct the data in the bucket. Histograms have been extensively studied and have been incorporated into the query optimizers of virtually all commercial relational DBMSs. Wavelet-based synopses were originally developed in the context of image and signal processing. The data set is viewed as a set of M elements in a vector - i.e., as a function defined on the set {0, 1, 2, . . ., M-1} - and the wavelet transform of this function is found as a weighted sum of wavelet "basis functions." The weights, or coefficients, can then be "thresholded," for example, by eliminating coefficients that are close to zero in magnitude. The remaining small set of coefficients serves as the synopsis. Wavelets are good at capturing features of the data set at various scales. Sketch summaries are particularly well suited to streaming data. Linear sketches, for example, view a numerical data set as a vector or matrix, and multiply the data by a fixed matrix. Such sketches are massively parallelizable. They can accommodate streams of transactions in which data is both inserted and removed. Sketches have also been used successfully to estimate the answer to COUNT DISTINCT queries, a notoriously hard problem. Synopses for Massive Data describes and compares the different synopsis methods. It also discusses the use of AQP within research systems, and discusses challenges and future directions. It is essential reading for anyone working with, or doing research on massive data.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Wagworld Pet Blankie (Blue) - X Large…
R309 R246 Discovery Miles 2 460
Peptine Pro Equine Hydrolysed Collagen…
R699 R499 Discovery Miles 4 990
Pink Elasticated Fabric Plaster Roll on…
R23 Discovery Miles 230
Tower Vinyl Sticker - Baby on the Move
R62 R47 Discovery Miles 470
John C. Maxwell Undated Planner
Paperback R469 R325 Discovery Miles 3 250
Space Blankets (Adult)
 (1)
R16 Discovery Miles 160
Casals Electric Blower Vacuum…
R599 R429 Discovery Miles 4 290
Stabilo Mini World Pastel Love Gift Set…
R669 Discovery Miles 6 690
The Wonder Of You
Elvis Presley, Royal Philharmonic Orchestra CD R58 R48 Discovery Miles 480
Leo
Deon Meyer Paperback  (3)
R365 R180 Discovery Miles 1 800

 

Partners