Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This book provides an introduction to the theory of linear systems and control for students in business mathematics, econometrics, computer science, and engineering. The focus is on discrete time systems, which are the most relevant in business applications, as opposed to continuous time systems, requiring less mathematical preliminaries. The subjects treated are among the central topics of deterministic linear system theory: controllability, observability, realization theory, stability and stabilization by feedback, LQ-optimal control theory. Kalman filtering and LQC-control of stochastic systems are also discussed, as are modeling, time series analysis and model specification, along with model validation. This second edition has been updated and slightly expanded. In addition, supplementary material containing the exercises is now available on the Springer Link's book website.
In deterministic identification the identified system is determined on the basis of a complexity measure of models and a misfit measure of models with respect to data. The choice of these measures and corresponding notions of optimality depend on the objectives of modelling. In this monograph, the cases of exact modelling, model reduction and approximate modelling are investigated. For the case of exact modelling a procedure is presented which is inspired by objectives of simplicity and corroboration. This procedure also gives a new solution for the partial realization problem. Further, appealing measures of complexity and distance for linear systems are defined and explicit numerical expressions are derived. A simple and new procedure for approximating a given system by one of less complexity is described. Finally, procedures and algorithms for deterministic time series analysis are presented. The procedures and algorithms are illustrated by simple examples and by numerical simulations.
Nowadays applied work in business and economics requires a solid understanding of econometric methods to support decision-making. Combining a solid exposition of econometric methods with an application-oriented approach, this rigorous textbook provides students with a working understanding and hands-on experience of current econometrics. Taking a 'learning by doing' approach, it covers basic econometric methods (statistics, simple and multiple regression, nonlinear regression, maximum likelihood, and generalized method of moments), and addresses the creative process of model building with due attention to diagnostic testing and model improvement. Its last part is devoted to two major application areas: the econometrics of choice data (logit and probit, multinomial and ordered choice, truncated and censored data, and duration data) and the econometrics of time series data (univariate time series, trends, volatility, vector autoregressions, and a brief discussion of SUR models, panel data, and simultaneous equations). * Real-world text examples and practical exercise questions stimulate active learning and show how econometrics can solve practical questions in modern business and economic management. * Focuses on the core of econometrics, regression, and covers two major advanced topics, choice data with applications in marketing and micro-economics, and time series data with applications in finance and macro-economics. * Learning-support features include concise, manageable sections of text, frequent cross-references to related and background material, summaries, computational schemes, keyword lists, suggested further reading, exercise sets, and online data sets and solutions. * Derivations and theory exercises are clearly marked for students in advanced courses. This textbook is perfect for advanced undergraduate students, new graduate students, and applied researchers in econometrics, business, and economics, and for researchers in other fields that draw on modern applied econometrics.
|
You may like...
|