Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry. The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.
After some decades of work a satisfactory theory of quantum gravity is still not available; moreover, there are indications that the original field theoretical approach may be better suited than originally expected. There, to first approximation, one is left with the problem of quantum field theory on Lorentzian manifolds. Surprisingly, this seemingly modest approach leads to far reaching conceptual and mathematical problems and to spectacular predictions, the most famous one being the Hawking radiation of black holes. Ingredients of this approach are the formulation of quantum physics in terms of C*-algebras, the geometry of Lorentzian manifolds, in particular their causal structure, and linear hyperbolic differential equations where the well-posedness of the Cauchy problem plays a distinguished role, as well as more recently the insights from suitable concepts such as microlocal analysis. This primer is an outgrowth of a compact course given by the editors and contributing authors to an audience of advanced graduate students and young researchers in the field, and assumes working knowledge of differential geometry and functional analysis on the part of the reader.
This monograph describes some of the most interesting results obtained by the mathematicians and physicists collaborating in the CRC 647 "Space - Time - Matter", in the years 2005 - 2016. The work presented concerns the mathematical and physical foundations of string and quantum field theory as well as cosmology. Important topics are the spaces and metrics modelling the geometry of matter, and the evolution of these geometries. The partial differential equations governing such structures and their singularities, special solutions and stability properties are discussed in detail. Contents Introduction Algebraic K-theory, assembly maps, controlled algebra, and trace methods Lorentzian manifolds with special holonomy - Constructions and global properties Contributions to the spectral geometry of locally homogeneous spaces On conformally covariant differential operators and spectral theory of the holographic Laplacian Moduli and deformations Vector bundles in algebraic geometry and mathematical physics Dyson-Schwinger equations: Fix-point equations for quantum fields Hidden structure in the form factors ofN = 4 SYM On regulating the AdS superstring Constraints on CFT observables from the bootstrap program Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities Yangian symmetry in maximally supersymmetric Yang-Mills theory Wave and Dirac equations on manifolds Geometric analysis on singular spaces Singularities and long-time behavior in nonlinear evolution equations and general relativity
Providing a systematic introduction to differential characters as introduced by Cheeger and Simons, this text describes important concepts such as fiber integration, higher dimensional holonomy, transgression, and the product structure in a geometric manner. Differential characters form a model of what is nowadays called differential cohomology, which is the mathematical structure behind the higher gauge theories in physics.
This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry. The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.
After some decades of work a satisfactory theory of quantum gravity is still not available; moreover, there are indications that the original field theoretical approach may be better suited than originally expected. There, to first approximation, one is left with the problem of quantum field theory on Lorentzian manifolds. Surprisingly, this seemingly modest approach leads to far reaching conceptual and mathematical problems and to spectacular predictions, the most famous one being the Hawking radiation of black holes. Ingredients of this approach are the formulation of quantum physics in terms of C*-algebras, the geometry of Lorentzian manifolds, in particular their causal structure, and linear hyperbolic differential equations where the well-posedness of the Cauchy problem plays a distinguished role, as well as more recently the insights from suitable concepts such as microlocal analysis. This primer is an outgrowth of a compact course given by the editors and contributing authors to an audience of advanced graduate students and young researchers in the field, and assumes working knowledge of differential geometry and functional analysis on the part of the reader.
This book revises the well-known capacity control problem in revenue management from the perspective of a risk-averse decision-maker. Modelling an expected utility maximizing decision maker, the problem is formulated as a risk-sensitive Markov decision process. Special emphasis is put on the existence of structured optimal policies. Numerical examples illustrate the results.
The link between the physical world and its visualization is geometry. This easy-to-read, generously illustrated textbook presents an elementary introduction to differential geometry with emphasis on geometric results. Avoiding formalism as much as possible, the author harnesses basic mathematical skills in analysis and linear algebra to solve interesting geometric problems, which prepare students for more advanced study in mathematics and other scientific fields such as physics and computer science. The wide range of topics includes curve theory, a detailed study of surfaces, curvature, variation of area and minimal surfaces, geodesics, spherical and hyperbolic geometry, the divergence theorem, triangulations, and the Gauss-Bonnet theorem. The section on cartography demonstrates the concrete importance of elementary differential geometry in applications. Clearly developed arguments and proofs, colour illustrations, and over 100 exercises and solutions make this book ideal for courses and self-study. The only prerequisites are one year of undergraduate calculus and linear algebra.
Dieses Beitragswerk bringt Vorreiter, oeffentliche Meinungsbildner und renommierte Fachexperten zu Fragestellungen des digitalen Wandels zusammen und bundelt deren Blickwinkel auf dieses entscheidende Zukunftsthema. Somit beleuchten die hochkaratigen Autoren aus Politik, Wirtschaft, Wissenschaft und Recht mit ihren Beitragen, in zwei Banden des Herausgeberwerkes, unterschiedliche Facetten der Digitalisierung. Dabei wird bewusst kein abschliessendes, wertendes Fazit vorweggenommen - gerade die durchaus kontroversen Sichtweisen der Autoren tragen zum Mehrwert des vorliegenden Werkes und insbesondere der gesellschaftlichen Diskussion zum digitalen Wandel bei.
Dieses Beitragswerk bringt Vorreiter, oeffentliche Meinungsbildner und renommierte Fachexperten zu Fragestellungen des digitalen Wandels zusammen und bundelt deren Blickwinkel auf dieses entscheidende Zukunftsthema. Somit beleuchten die hochkaratigen Autoren aus Politik, Wirtschaft, Wissenschaft und Recht mit ihren Beitragen, in zwei Banden des Herausgeberwerkes, unterschiedliche Facetten der Digitalisierung. Dabei wird bewusst kein abschliessendes, wertendes Fazit vorweggenommen - gerade die durchaus kontroversen Sichtweisen der Autoren tragen zum Mehrwert des vorliegenden Werkes und insbesondere der gesellschaftlichen Diskussion zum digitalen Wandel bei.
|
You may like...
|