Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com
Soft Condensed Matter commonly deals with materials that are mechanically soft and, more importantly, particularly prone to thermal fluctuation effects. Charged soft matter systems are especially interesting: they can be manufactured artificially as polyelectrolytes to serve as superabsorbers in dypers, as flocculation and retention agents, as thickeners and gelling agents, and as oil-recovery process aids. They are also abundant in living organisms, mostly performing important structural (e.g. membranes) and functional (e.g. DNA) tasks. The book describes the many areas in soft matter and biophysics where electrostatic interactions play an important role. It offers in-depth coverage of recent theoretical approaches, advances in computer simulation, and novel experimental techniques. Readership: Advanced undergraduate level in physics, physical chemistry, and theoretical biochemistry.
"Soft matter" is nowadays used to describe an increasingly important class of - terials that encompasses polymers, liquid crystals, molecular assemblies building hierarchical structures, organic-inorganic hybrids, and the whole area of colloidal science. Common to all is that ?uctuations, and thus the thermal energy k T and B entropy, play an important role. "Soft" then means that these materials are in a state of matter that is neither a simple liquid nor a hard solid of the type studied in hard condensed matter, hence sometimes many types of soft matter are also named "c- plex ?uids. " Soft matter, either of synthetic or biological origin, has been a subject of physical and chemical research since the early ?nding of Staudinger that long chain mo- cules exist. From then on, synthetic chemistry as well as physical characterization underwent an enormous development. One of the outcomes is the abundant pr- ence of polymeric materials in our everyday life. Nowadays, methods developed for synthetic polymers are being more and more applied to biological soft matter. The link between modern biophysics and soft matter physics is quite close in many respects. This also means that the focus of research has moved from simple - mopolymers to more complex structures, such as branched objects, heteropolymers (random copolymers, proteins), polyelectrolytes, amphiphiles and so on.
Soft matter science is nowadays an acronym for an increasingly important class of materials, which ranges from polymers, liquid crystals, colloids up to complex macromolecular assemblies, covering sizes from the nanoscale up the microscale. Computer simulations have proven as an indispensable, if not the most powerful, tool to understand properties of these materials and link theoretical models to experiments. In this first volume of a small series recognized leaders of the field review advanced topics and provide critical insight into the state-of-the-art methods and scientific questions of this lively domain of soft condensed matter research.
This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com
Soft matter science is nowadays an acronym for an increasingly important class of materials, which ranges from polymers, liquid crystals, colloids up to complex macromolecular assemblies, covering sizes from the nanoscale up the microscale. Computer simulations have proven as an indispensable, if not the most powerful, tool to understand properties of these materials and link theoretical models to experiments. In this first volume of a small series recognized leaders of the field review advanced topics and provide critical insight into the state-of-the-art methods and scientific questions of this lively domain of soft condensed matter research.
Soft Condensed Matter commonly deals with materials that are mechanically soft and, more importantly, particularly prone to thermal fluctuation effects. Charged soft matter systems are especially interesting: they can be manufactured artificially as polyelectrolytes to serve as superabsorbers in dypers, as flocculation and retention agents, as thickeners and gelling agents, and as oil-recovery process aids. They are also abundant in living organisms, mostly performing important structural (e.g. membranes) and functional (e.g. DNA) tasks. The book describes the many areas in soft matter and biophysics where electrostatic interactions play an important role. It offers in-depth coverage of recent theoretical approaches, advances in computer simulation, and novel experimental techniques. Readership: Advanced undergraduate level in physics, physical chemistry, and theoretical biochemistry.
|
You may like...
|