Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
Covering technological aspects as well as the suitability and
applicability of various kinds of uses, this handbook shows
optimization strategies, techniques and assembly pathways to
achieve the combination of complex, even three-dimensional
structures with simple manufacturing steps. The authors provide
information on markets, commercialization opportunities and aspects
of mass or large-scale production as well as design tools,
experimental techniques, novel materials, and ideas for future
improvements. Not only do they weigh up cost versus quantity, they
also consider CMOS and LIGA strategies.
Inkjet-based Micromanufacturing Inkjet technology goes way beyond putting ink on paper: it enables simpler, faster and more reliable manufacturing processes in the fields of micro- and nanotechnology. Modern inkjet heads are per se precision instruments that deposit droplets of fluids on a variety of surfaces in programmable, repeating patterns, allowing, after suitable modifications and adaptations, the manufacturing of devices such as thin-film transistors, polymer-based displays and photovoltaic elements. Moreover, inkjet technology facilitates the large-scale production of flexible RFID transponders needed, eg, for automated logistics and miniaturized sensors for applications in health surveillance. The book gives an introduction to inkjet-based micromanufacturing, followed by an overview of the underlying theories and models, which provides the basis for a full understanding and a successful usage of inkjet-based methods in current microsystems research and development Overview of Inkjet-based Micromanufacturing: Thermal Inkjet Theory and Modeling Post-Printing Processes for Inorganic Inks for Plastic Electronics Applications Inkjet Ink Formulations Inkjet Fabrication of Printed Circuit Boards Antennas for Radio Frequency Identification Tags Inkjet Printing for MEMS
Combining robotics with nanotechnology, this ready reference summarizes the fundamentals and emerging applications in this fascinating research field. This is the first book to introduce tools specifically designed and made for manipulating micro- and nanometer-sized objects, and presents such examples as semiconductor packaging and clinical diagnostics as well as surgery. The first part discusses various topics of on-chip and device-based micro- and nanomanipulation, including the use of acoustic, magnetic, optical or dielectrophoretic fields, while surface-driven and high-speed microfluidic manipulation for biophysical applications are also covered. In the second part of the book, the main focus is on microrobotic tools. Alongside magnetic micromanipulators, bacteria and untethered, chapters also discuss silicon nano- and integrated optical tweezers. The book closes with a number of chapters on nanomanipulation using AFM and nanocoils under optical and electron microscopes. Exciting images from the tiniest robotic systems at the nano-level are used to illustrate the examples throughout the work. A must-have book for readers with a background ranging from engineering to nanotechnology.
System-level modeling of MEMS - microelectromechanical systems - comprises integrated approaches to simulate, understand, and optimize the performance of sensors, actuators, and microsystems, taking into account the intricacies of the interplay between mechanical and electrical properties, circuitry, packaging, and design considerations. Thereby, system-level modeling overcomes the limitations inherent to methods that focus only on one of these aspects and do not incorporate their mutual dependencies. The book addresses the two most important approaches of system-level modeling, namely physics-based modeling with lumped elements and mathematical modeling employing model order reduction methods, with an emphasis on combining single device models to entire systems. At a clearly understandable and sufficiently detailed level the readers are made familiar with the physical and mathematical underpinnings of MEMS modeling. This enables them to choose the adequate methods for the respective application needs. This work is an invaluable resource for all materials scientists, electrical engineers, scientists working in the semiconductor and/or sensor industry, physicists, and physical chemists.
This edition of 'CMOS-MEMS' was originally published in the successful series 'Advanced Micro & Nanosystems'. A close look at enabling technologies is taken, the first section on MEMS featuring an introduction to the challenges and benefi ts of three-dimensional silicon processing. An insider's view of industrial MEMS commercialization is followed by chapters on capacitive interfaces for MEMS, packaging issues of micro- and nanosystems, MEMS contributions to high frequency integrated resonators and filters, and the uses of MEMS in mass data storage and electrochemical imaging by means of scanning micro- and nanoprobes. The second section on nanodevices first tackles the emerging topic of nanofluidics with a contribution each on simulation tools and on devices and uses, followed by another two on nanosensors featuring CNT sensors and CMOS-based DNA sensor arrays, respectively.
Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.
Following on from the first AMN volume, this handy reference and textbook examines the topic of nanosystem design in further detail. It explains the physical and chemical basics behind the design and fabrication of nanodevices, covering all important, recent advances in the field, while introducing nanosystems to less experienced readers. The result is an important source for a fast, accurate overview of the state of the art of nanosystem realization, summarizing further important literature.
|
You may like...
Surfacing - On Being Black And Feminist…
Desiree Lewis, Gabeba Baderoon
Paperback
|