0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Symbolic Analysis and Reduction of VLSI Circuits (Hardcover, 2005 ed.): Zhanhai Qin, Chung-Kuan Cheng Symbolic Analysis and Reduction of VLSI Circuits (Hardcover, 2005 ed.)
Zhanhai Qin, Chung-Kuan Cheng
R2,813 Discovery Miles 28 130 Ships in 18 - 22 working days

Symbolic analysis is an intriguing topic in VLSI designs.

The analysis methods are crucial for the applications to the parasitic reduction and analog circuit evaluation. However, analyzing circuits symbolically remains a challenging research issue. Therefore, in this book, we survey the recent results as the progress of on-going works rather than as the solution of the field.

For parasitic reduction, we approximate a huge amount of electrical parameters into a simplified RLC network. This reduction allows us to handle very large integrated circuits with given memory capacity and CPU time. A symbolic analysis approach reduces the circuit according to the network topology. Thus, the designer can maintain the meaning of the original network and perform the analysis hierarchically.

For analog circuit designs, symbolic analysis provides the relation between the tunable parameters and the characteristics of the circuit. The analysis allows us to optimize the circuit behavior.

The book is divided into three parts. Part I touches on the basics of circuit analysis in time domain and in s domain. For an s domain expression, the Taylor's expansion with s approaching infinity is equivalent to the time domain solution after the inverse Laplace transform. On the other hand, the Taylor's expansion when s approaches zero derives the moments of the output responses in time domain.

Part II focuses on the techniques for parasitic reduction.

In Chapter 2, we present the approximation methods to match

the first few moments with reduced circuit orders.

In Chapter 3, we apply the Y-Delta transformation to reduce the dynamic linear network. The method finds the exact values of the low order coefficients of the numerator and denominator of the transfer function and thus matches part of the moments. In Chapter 4, we handle two major issues of the Y-Delta

transformation: common factors in fractional expressions and round-off errors. Chapter 5 explains the stability of the reduced expression, in particular the Ruth-Hurwitz Criterion. We make an effort to describe the proof of the Criterion because the details are omitted in most of the contemporary textbooks. In Chapter 6, we present techniques to synthesize circuits to approximate the reduced expressions after the transformation.

In Part III, we discuss symbolic generation of the determinants and cofactors for the application to analog designs. In Chapter 7, we depict the classical topological analysis approach. In Chapter 8, we describe a determinant decision diagram approach that exploits the sparsity of the matrix to accelerate the computation. In Chapter 9, we take only significant terms when we search through

determinant decision diagram to approximate the solution.

In Chapter 10, we extend the determinant decision diagram

to a hierarchical model. The construction of the modules through the hierarchy is similar to the Y-Delta transformation in the sense that a byproduct of common factors appears in the numerator and denominator. Therefore, we describe the method to prune the common factors.

Symbolic Analysis and Reduction of VLSI Circuits (Paperback, Softcover reprint of hardcover 1st ed. 2005): Zhanhai Qin,... Symbolic Analysis and Reduction of VLSI Circuits (Paperback, Softcover reprint of hardcover 1st ed. 2005)
Zhanhai Qin, Chung-Kuan Cheng
R2,656 Discovery Miles 26 560 Ships in 18 - 22 working days

Symbolic analysis is an intriguing topic in VLSI designs.

The analysis methods are crucial for the applications to the parasitic reduction and analog circuit evaluation. However, analyzing circuits symbolically remains a challenging research issue. Therefore, in this book, we survey the recent results as the progress of on-going works rather than as the solution of the field.

For parasitic reduction, we approximate a huge amount of electrical parameters into a simplified RLC network. This reduction allows us to handle very large integrated circuits with given memory capacity and CPU time. A symbolic analysis approach reduces the circuit according to the network topology. Thus, the designer can maintain the meaning of the original network and perform the analysis hierarchically.

For analog circuit designs, symbolic analysis provides the relation between the tunable parameters and the characteristics of the circuit. The analysis allows us to optimize the circuit behavior.

The book is divided into three parts. Part I touches on the basics of circuit analysis in time domain and in s domain. For an s domain expression, the Taylor's expansion with s approaching infinity is equivalent to the time domain solution after the inverse Laplace transform. On the other hand, the Taylor's expansion when s approaches zero derives the moments of the output responses in time domain.

Part II focuses on the techniques for parasitic reduction.

In Chapter 2, we present the approximation methods to match

the first few moments with reduced circuit orders.

In Chapter 3, we apply the Y-Delta transformation to reduce the dynamic linear network. The method finds the exact values of the low order coefficients of the numerator and denominator of the transfer function and thus matches part of the moments. In Chapter 4, we handle two major issues of the Y-Delta

transformation: common factors in fractional expressions and round-off errors. Chapter 5 explains the stability of the reduced expression, in particular the Ruth-Hurwitz Criterion. We make an effort to describe the proof of the Criterion because the details are omitted in most of the contemporary textbooks. In Chapter 6, we present techniques to synthesize circuits to approximate the reduced expressions after the transformation.

In Part III, we discuss symbolic generation of the determinants and cofactors for the application to analog designs. In Chapter 7, we depict the classical topological analysis approach. In Chapter 8, we describe a determinant decision diagram approach that exploits the sparsity of the matrix to accelerate the computation. In Chapter 9, we take only significant terms when we search through

determinant decision diagram to approximate the solution.

In Chapter 10, we extend the determinant decision diagram

to a hierarchical model. The construction of the modules through the hierarchy is similar to the Y-Delta transformation in the sense that a byproduct of common factors appears in the numerator and denominator. Therefore, we describe the method to prune the common factors.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
3D and 4D Printing of Polymer…
Kishor Kumar Sadasivuni, Kalim Deshmukh, … Paperback R5,549 Discovery Miles 55 490
Classical Mechanics - Hamiltonian and…
Alexei Deriglazov Hardcover R4,046 Discovery Miles 40 460
City Matters - Competitiveness, Cohesion…
Book R2,784 Discovery Miles 27 840
The Complete Polyethylene Film Extrusion…
Bert Gregory Hardcover R3,187 Discovery Miles 31 870
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, … Hardcover R6,101 Discovery Miles 61 010
Unanticipated Gains - Origins of Network…
Mario Luis Small Hardcover R1,233 Discovery Miles 12 330
Fluid Dynamics - Part 2: Asymptotic…
Anatoly I. Ruban Hardcover R2,352 Discovery Miles 23 520
Shine A Light - In Conversation With…
Corrine Wilson Paperback R349 Discovery Miles 3 490
Thermally Conductive Polymer Composites
Junwei Gu Paperback R3,925 Discovery Miles 39 250
Sonic Thunder - A discussion of natural…
W R Matson Paperback R750 Discovery Miles 7 500

 

Partners