Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This 1996 book summarises the state of knowledge on the microscopic behaviour of oxide surfaces. The first chapter of the book summarises classical approaches, introduces the concept of ionicity, and describes the mixed iono-covalent character of the oxygen cation bond in bulk materials. The next three chapters focus on the characteristics of the atomic structure (relaxation, rumpling and reconstruction effects), the electronic structure (band width, gap width, etc.) and the excitations of clean surfaces. Metal-oxide interfaces are considered in the fourth chapter with special emphasis on the microscopic interfacial interactions responsible for adhesion. The last chapter develops the concepts underlying acid-base reactions on oxide surfaces, which are used in catalysis, in adhesion science, and in colloid physics, and discusses their applicability to the adsorption of hydroxyl groups. A comprehensive list of references is included.
Nanostructured oxide materials - ultra-thin films, nanoparticles and other nanometer-scale objects - play prominent roles in many aspects of our every-day life, in nature and in technological applications, among which is the all-oxide electronics of tomorrow. Due to their reduced dimensions and dimensionality, they strongly interact with their environment: gaseous atmosphere, water or support. Their novel physical and chemical properties are the subject of this book, from both a fundamental and an applied perspective. Oxide Thin Films and Nanostructures reviews and illustrates the various methodologies for their growth, fabrication, experimental and theoretical characterization. The role of key parameters such as film thickness, nanoparticle size and support interactions in driving their fundamental properties is underlined. At the ultimate thickness limit, two-dimensional oxide materials are generated, whose functionalities and potential applications are described. The emerging field of cation mixing is mentioned, which opens new avenues for engineering many oxide properties, as witnessed by natural oxide nanomaterials such as clay minerals, which, beyond their role at the Earth's surface, are now widely used in a whole range of human activities. Oxide nanomaterials are involved in many interdisciplinary fields of advanced nanotechnologies. Catalysis, photocatalysis, solar energy materials, fuel cells, corrosion protection, and biotechnological applications are amongst the areas where they are making an impact. The book outlines prototypical examples. A cautious glimpse into future developments of scientific activity is finally ventured to round off the presentation.
This 1996 book summarises the state of knowledge on the microscopic behaviour of oxide surfaces. The first chapter of the book summarises classical approaches, introduces the concept of ionicity, and describes the mixed iono-covalent character of the oxygen cation bond in bulk materials. The next three chapters focus on the characteristics of the atomic structure (relaxation, rumpling and reconstruction effects), the electronic structure (band width, gap width, etc.) and the excitations of clean surfaces. Metal-oxide interfaces are considered in the fourth chapter with special emphasis on the microscopic interfacial interactions responsible for adhesion. The last chapter develops the concepts underlying acid-base reactions on oxide surfaces, which are used in catalysis, in adhesion science, and in colloid physics, and discusses their applicability to the adsorption of hydroxyl groups. A comprehensive list of references is included.
|
You may like...
|