0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (6)
  • -
Status
Brand

Showing 1 - 6 of 6 matches in All Departments

Foundations of Dependable Computing - System Implementation (Hardcover, 1994 ed.): Gary M. Koob, Clifford G. Lau Foundations of Dependable Computing - System Implementation (Hardcover, 1994 ed.)
Gary M. Koob, Clifford G. Lau
R4,332 Discovery Miles 43 320 Ships in 12 - 17 working days

Foundations of Dependable Computing: System Implementation, explores the system infrastructure needed to support the various paradigms of Paradigms for Dependable Applications. Approaches to implementing support mechanisms and to incorporating additional appropriate levels of fault detection and fault tolerance at the processor, network, and operating system level are presented. A primary concern at these levels is balancing cost and performance against coverage and overall dependability. As these chapters demonstrate, low overhead, practical solutions are attainable and not necessarily incompatible with performance considerations. The section on innovative compiler support, in particular, demonstrates how the benefits of application specificity may be obtained while reducing hardware cost and run-time overhead. A companion to this volume (published by Kluwer) subtitled Models and Frameworks for Dependable Systems presents two comprehensive frameworks for reasoning about system dependability, thereby establishing a context for understanding the roles played by specific approaches presented in this book's two companion volumes. It then explores the range of models and analysis methods necessary to design, validate and analyze dependable systems. Another companion to this book (published by Kluwer), subtitled Paradigms for Dependable Applications, presents a variety of specific approaches to achieving dependability at the application level. Driven by the higher level fault models of Models and Frameworks for Dependable Systems, and built on the lower level abstractions implemented in a third companion book subtitled System Implementation, these approaches demonstrate how dependability may be tuned to the requirements of an application, the fault environment, and the characteristics of the target platform. Three classes of paradigms are considered: protocol-based paradigms for distributed applications, algorithm-based paradigms for parallel applications, and approaches to exploiting application semantics in embedded real-time control systems.

Foundations of Dependable Computing - Paradigms for Dependable Applications (Hardcover, 1994 ed.): Gary M. Koob, Clifford G. Lau Foundations of Dependable Computing - Paradigms for Dependable Applications (Hardcover, 1994 ed.)
Gary M. Koob, Clifford G. Lau
R4,308 Discovery Miles 43 080 Ships in 12 - 17 working days

Foundations of Dependable Computing: Paradigms for Dependable Applications, presents a variety of specific approaches to achieving dependability at the application level. Driven by the higher level fault models of Models and Frameworks for Dependable Systems, and built on the lower level abstractions implemented in a third companion book subtitled System Implementation, these approaches demonstrate how dependability may be tuned to the requirements of an application, the fault environment, and the characteristics of the target platform. Three classes of paradigms are considered: protocol-based paradigms for distributed applications, algorithm-based paradigms for parallel applications, and approaches to exploiting application semantics in embedded real-time control systems. The companion volume subtitled Models and Frameworks for Dependable Systems presents two comprehensive frameworks for reasoning about system dependability, thereby establishing a context for understanding the roles played by specific approaches presented in this book's two companion volumes. It then explores the range of models and analysis methods necessary to design, validate and analyze dependable systems. Another companion book (published by Kluwer) subtitled System Implementation, explores the system infrastructure needed to support the various paradigms of Paradigms for Dependable Applications. Approaches to implementing support mechanisms and to incorporating additional appropriate levels of fault detection and fault tolerance at the processor, network, and operating system level are presented. A primary concern at these levels is balancing cost and performance against coverage and overall dependability. As these chapters demonstrate, low overhead, practical solutions are attainable and not necessarily incompatible with performance considerations. The section on innovative compiler support, in particular, demonstrates how the benefits of application specificity may be obtained while reducing hardware cost and run-time overhead.

Foundations of Dependable Computing - Models and Frameworks for Dependable Systems (Hardcover, 1994 ed.): Gary M. Koob,... Foundations of Dependable Computing - Models and Frameworks for Dependable Systems (Hardcover, 1994 ed.)
Gary M. Koob, Clifford G. Lau
R4,319 Discovery Miles 43 190 Ships in 12 - 17 working days

Foundations of Dependable Computing: Models and Frameworks for Dependable Systems presents two comprehensive frameworks for reasoning about system dependability, thereby establishing a context for understanding the roles played by specific approaches presented in this book's two companion volumes. It then explores the range of models and analysis methods necessary to design, validate and analyze dependable systems. A companion to this book (published by Kluwer), subtitled Paradigms for Dependable Applications, presents a variety of specific approaches to achieving dependability at the application level. Driven by the higher level fault models of Models and Frameworks for Dependable Systems, and built on the lower level abstractions implemented in a third companion book subtitled System Implementation, these approaches demonstrate how dependability may be tuned to the requirements of an application, the fault environment, and the characteristics of the target platform. Three classes of paradigms are considered: protocol-based paradigms for distributed applications, algorithm-based paradigms for parallel applications, and approaches to exploiting application semantics in embedded real-time control systems. Another companion book (published by Kluwer) subtitled System Implementation, explores the system infrastructure needed to support the various paradigms of Paradigms for Dependable Applications. Approaches to implementing support mechanisms and to incorporating additional appropriate levels of fault detection and fault tolerance at the processor, network, and operating system level are presented. A primary concern at these levels is balancing cost and performance against coverage and overall dependability. As these chapters demonstrate, low overhead, practical solutions are attainable and not necessarily incompatible with performance considerations. The section on innovative compiler support, in particular, demonstrates how the benefits of application specificity may be obtained while reducing hardware cost and run-time overhead.

Foundations of Dependable Computing - Paradigms for Dependable Applications (Paperback, Softcover reprint of the original 1st... Foundations of Dependable Computing - Paradigms for Dependable Applications (Paperback, Softcover reprint of the original 1st ed. 1994)
Gary M. Koob, Clifford G. Lau
R4,210 Discovery Miles 42 100 Ships in 10 - 15 working days

Foundations of Dependable Computing: Paradigms for Dependable Applications, presents a variety of specific approaches to achieving dependability at the application level. Driven by the higher level fault models of Models and Frameworks for Dependable Systems, and built on the lower level abstractions implemented in a third companion book subtitled System Implementation, these approaches demonstrate how dependability may be tuned to the requirements of an application, the fault environment, and the characteristics of the target platform. Three classes of paradigms are considered: protocol-based paradigms for distributed applications, algorithm-based paradigms for parallel applications, and approaches to exploiting application semantics in embedded real-time control systems. The companion volume subtitled Models and Frameworks for Dependable Systems presents two comprehensive frameworks for reasoning about system dependability, thereby establishing a context for understanding the roles played by specific approaches presented in this book's two companion volumes. It then explores the range of models and analysis methods necessary to design, validate and analyze dependable systems. Another companion book (published by Kluwer) subtitled System Implementation, explores the system infrastructure needed to support the various paradigms of Paradigms for Dependable Applications. Approaches to implementing support mechanisms and to incorporating additional appropriate levels of fault detection and fault tolerance at the processor, network, and operating system level are presented. A primary concern at these levels is balancing cost and performance against coverage and overall dependability. As these chapters demonstrate, low overhead, practical solutions are attainable and not necessarily incompatible with performance considerations. The section on innovative compiler support, in particular, demonstrates how the benefits of application specificity may be obtained while reducing hardware cost and run-time overhead.

Foundations of Dependable Computing - System Implementation (Paperback, Softcover reprint of the original 1st ed. 1994): Gary... Foundations of Dependable Computing - System Implementation (Paperback, Softcover reprint of the original 1st ed. 1994)
Gary M. Koob, Clifford G. Lau
R4,241 Discovery Miles 42 410 Ships in 10 - 15 working days

Foundations of Dependable Computing: System Implementation, explores the system infrastructure needed to support the various paradigms of Paradigms for Dependable Applications. Approaches to implementing support mechanisms and to incorporating additional appropriate levels of fault detection and fault tolerance at the processor, network, and operating system level are presented. A primary concern at these levels is balancing cost and performance against coverage and overall dependability. As these chapters demonstrate, low overhead, practical solutions are attainable and not necessarily incompatible with performance considerations. The section on innovative compiler support, in particular, demonstrates how the benefits of application specificity may be obtained while reducing hardware cost and run-time overhead. A companion to this volume (published by Kluwer) subtitled Models and Frameworks for Dependable Systems presents two comprehensive frameworks for reasoning about system dependability, thereby establishing a context for understanding the roles played by specific approaches presented in this book's two companion volumes. It then explores the range of models and analysis methods necessary to design, validate and analyze dependable systems. Another companion to this book (published by Kluwer), subtitled Paradigms for Dependable Applications, presents a variety of specific approaches to achieving dependability at the application level. Driven by the higher level fault models of Models and Frameworks for Dependable Systems, and built on the lower level abstractions implemented in a third companion book subtitled System Implementation, these approaches demonstrate how dependability may be tuned to the requirements of an application, the fault environment, and the characteristics of the target platform. Three classes of paradigms are considered: protocol-based paradigms for distributed applications, algorithm-based paradigms for parallel applications, and approaches to exploiting application semantics in embedded real-time control systems.

Foundations of Dependable Computing - Models and Frameworks for Dependable Systems (Paperback, Softcover reprint of the... Foundations of Dependable Computing - Models and Frameworks for Dependable Systems (Paperback, Softcover reprint of the original 1st ed. 1994)
Gary M. Koob, Clifford G. Lau
R4,225 Discovery Miles 42 250 Ships in 10 - 15 working days

Foundations of Dependable Computing: Models and Frameworks for Dependable Systems presents two comprehensive frameworks for reasoning about system dependability, thereby establishing a context for understanding the roles played by specific approaches presented in this book's two companion volumes. It then explores the range of models and analysis methods necessary to design, validate and analyze dependable systems. A companion to this book (published by Kluwer), subtitled Paradigms for Dependable Applications, presents a variety of specific approaches to achieving dependability at the application level. Driven by the higher level fault models of Models and Frameworks for Dependable Systems, and built on the lower level abstractions implemented in a third companion book subtitled System Implementation, these approaches demonstrate how dependability may be tuned to the requirements of an application, the fault environment, and the characteristics of the target platform. Three classes of paradigms are considered: protocol-based paradigms for distributed applications, algorithm-based paradigms for parallel applications, and approaches to exploiting application semantics in embedded real-time control systems. Another companion book (published by Kluwer) subtitled System Implementation, explores the system infrastructure needed to support the various paradigms of Paradigms for Dependable Applications. Approaches to implementing support mechanisms and to incorporating additional appropriate levels of fault detection and fault tolerance at the processor, network, and operating system level are presented. A primary concern at these levels is balancing cost and performance against coverage and overall dependability. As these chapters demonstrate, low overhead, practical solutions are attainable and not necessarily incompatible with performance considerations. The section on innovative compiler support, in particular, demonstrates how the benefits of application specificity may be obtained while reducing hardware cost and run-time overhead.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Baby Dove Lotion Night Time
R80 Discovery Miles 800
Fly Repellent ShooAway (Black)(3 Pack)
R1,047 R837 Discovery Miles 8 370
ZA Cute Puppy Love Paw Set (Necklace…
R712 R499 Discovery Miles 4 990
Nuovo All-In-One Car Seat (Black)
R3,599 R3,020 Discovery Miles 30 200
Golf Groove Sharpener (Black)
R249 Discovery Miles 2 490
Marvel Spiderman Fibre-Tip Markers (Pack…
R57 Discovery Miles 570
PU Auto Pop-Up Card Holder
R199 R159 Discovery Miles 1 590
Infantino Animal Counting Book
R170 R159 Discovery Miles 1 590
Ravensburger Marvel Jigsaw Puzzles…
R299 R250 Discovery Miles 2 500
Professor Snape Wizard Wand - In…
 (8)
R801 Discovery Miles 8 010

 

Partners