Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
In 2002, an introductory workshop was held at the Mathematical Sciences Research Institute in Berkeley to survey some of the many directions of the commutative algebra field. Six principal speakers each gave three lectures, accompanied by a help session, describing the interaction of commutative algebra with other areas of mathematics for a broad audience of graduate students and researchers. This book is based on those lectures, together with papers from contributing researchers. David Benson and Srikanth Iyengar present an introduction to the uses and concepts of commutative algebra in the cohomology of groups. Mark Haiman considers the commutative algebra of n points in the plane. Ezra Miller presents an introduction to the Hilbert scheme of points to complement Professor Haiman's paper. Further contributors include David Eisenbud and Jessica Sidman; Melvin Hochster; Graham Leuschke; Rob Lazarsfeld and Manuel Blickle; Bernard Teissier; and Ana Bravo.
During late June and early July of 1987 a three week program (dubbed "microprogram") in Commutative Algebra was held at the Mathematical Sciences Research Institute at Berkeley. The intent of the microprogram was to survey recent major results and current trends in the theory of commutative rings, especially commutative Noetherian rings. There was enthusiastic international participation. The papers in this volume, some of which are expository, some strictly research, and some a combination, reflect the intent of the program. They give a cross-section of what is happening now in this area. Nearly all of the manuscripts were solicited from the speakers at the conference, and in most instances the manuscript is based on the conference lecture. The editors hope that they will be of interest and of use both to experts and neophytes in the field. The editors would like to express their appreciation to the director of MSRI, Professor Irving Kaplansky, who first suggested the possibility of such a conference and made the task of organization painless. We would also like to thank the IVISRI staff who were unfailingly efficient, pleasant, and helpful during the meeting, and the manager of MSRI, Arlene Baxter, for her help with this volume. Finally we would like to express our appreciation to David Mostardi who did much of the typing and put the electronic pieces together.
Integral closure has played a role in number theory and algebraic geometry since the nineteenth century, but a modern formulation of the concept for ideals perhaps began with the work of Krull and Zariski in the 1930s. It has developed into a tool for the analysis of many algebraic and geometric problems. This book collects together the central notions of integral closure and presents a unified treatment. Techniques and topics covered include: behavior of the Noetherian property under integral closure, analytically unramified rings, the conductor, field separability, valuations, Rees algebras, Rees valuations, reductions, multiplicity, mixed multiplicity, joint reductions, the Briancon-Skoda theorem, Zariski's theory of integrally closed ideals in two-dimensional regular local rings, computational aspects, adjoints of ideals and normal homomorphisms. With many worked examples and exercises, this book will provide graduate students and researchers in commutative algebra or ring theory with an approachable introduction leading into the current literature.
In 2002, an introductory workshop was held at the Mathematical Sciences Research Institute in Berkeley to survey some of the many new directions of the commutative algebra field. Six principal speakers each gave three lectures, accompanied by a help session, describing the interaction of commutative algebra with other areas of mathematics for a broad audience of graduate students and researchers. This book is based on those lectures, together with papers from contributing researchers. David Benson and Srikanth Iyengar present an introduction to the uses and concepts of commutative algebra in the cohomology of groups. Mark Haiman considers the commutative algebra of n points in the plane. Ezra Miller presents an introduction to the Hilbert scheme of points to complement Professor Haiman's paper. David Eisenbud and Jessica Sidman give an introduction to the geometry of syzygies, addressing the basic question of relating the geometry of a projective variety with an embedding into projective space to the minimal free resolution of its coordinate ring over the polynomial ring of ambient projective space. Melvin Hochster presents an introduction to the theory of tight closure. to compute it. Rob Lazarsfeld and Manuel Blickle discuss the theory of multiplier ideals and how they can be used in commutative algebra. Bernard Teissier presents ideas related to resolution of singularities, complemented by Ana Bravo's paper on canonical subalgebra bases.
|
You may like...
|