Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
For many decades, the lead-acid battery has been the most widely
used energy-storage device for medium- and large-scale applications
(approximately 100Wh and above). In recent years, the traditional,
flooded design of the battery has begun to be replaced by an
alternative design. This version - the valve-regulated lead-acid
(VRLA) battery - requires no replenishment of the water content of
the electrolyte solution, does not spill liquids, and can be used
in any desired orientation. Since the VRLA battery operates in a
somewhat different manner from its flooded counterpart,
considerable technological development has been necessary to meet
the exacting performance requirements of the full range of
applications in which rechargeable batteries are used.
Clean Energy presents a broad survey of the energy problems facing society over the coming decades and the prospects for their solution. The book emphasizes the importance of developing a strategy for the world's future energy supply. The strategy must take into account: the finite supplies of natural gas and petroleum; the increased consumption of fuel by developing economies; the concern over greenhouse gas emissions; the pollution caused by burning coal (especially coal with a high sulphur content); the difficulties and costs of extracting unconventional fossil fuels; and the technical, sociological and cost barriers that restrict the use of renewable forms of energy. Clean Energy sets the various renewable energies (wind, waves, solar etc) in the context of present and projected world production of energy and its use in the time-frame until 2020 and looks speculatively beyond that. It looks at the possibilities for reducing pollution from fossil fuels and tackles the serious problem of how to store energy, in order to smooth out fluctuations in supply and demand. Clean Energy is well illustrated with diagrams and photographs. It is accessible to anyone who has studied science to A-level and will appeal to anyone with a serious interest in environmental matters, and the interaction between energy usage and the environment.
Batteries are becoming increasingly important in today's world of portable electronic devices, along with the need to store electricity derived from solar and other renewable forms of energy, and the desire to introduce electric and hybrid electric vehicles to reduce emissions. Understanding Batteries is a must for all those seeking a straightforward explanation of how batteries are constructed, their operation, and the factors determining their performance and life. Beginning with a brief history of the development of batteries and a discussion of their applications and markets, the book goes on to outline the basic terminology and science of batteries. The different types of primary (non-rechargeable) and secondary (rechargeable) batteries are then described and emphasis is given to the importance of matching the battery to the intended application. Examples are given to demonstrate how to define and prioritise the various criteria which comprise the battery specification. Throughout, the chemistry is kept as simple as possible. Understanding Batteries will appeal to a wide range of readers, including electrical equipment manufacturers and users, engineers and technicians, chemistry and materials science students, teachers and the interested battery user.
This volume presents plenary lectures and invited papers that Were delivered during the Fourth Australian Conference on Electro chemistry held at The Flinders University of South Australia, 16-20th February 1976. EZeat~oahemi8try fo~ a Futu~e Soaiety was selected as the Conference theme since the organising committee were mindful of the rapid change in technological perspective which the world now faces. We no longer have a prospect of uncontrolled spontaneous expansion and change as the result of technological enterprise. Rather, we face the task of attempting to reach a state of very restricted growth. In the next few decades special accent must be placed on minimizing pollution and maximizing the efficient utilization of all available energy sources. With this in mind, the Conference organisers considered that a conventional electrochemistry symposium, with its divisions into the various academic aspects, would be less relevant than a meeting devoted to aspects of electrochemistry which may underlie parts of the new and necessary technology for the future state of affairs. What has actually been achieved by the Conference organisers is a balance between the ideals expressed and the resulting response from electrochemists. This response has a bias which reflects the dominance of certain resources, e.g. metallic minerals, within Australia. Consequently, the papers included in T~ends in EZeat~o ahemist~ cover subjects which are of both global and local concern.
A transition to renewable and low-carbon forms of energy is being widely debated as a means of securing a sustainable future for mankind. Hydrogen Energy Challenges and Prospects, a new book from the authors of Clean Energy, considers the prospects for hydrogen as a universal energy vector and fuel for the decades to come. With no emissions other than water arising from its combustion, the potential virtues of harnessing and utilizing hydrogen correlate with recent growing concern over the security of conventional fuel supply and global climate change. This book sets out to analyze the technical situation in an objective fashion, free from the constraints of political and industrial loyalties. Areas covered include pathways to hydrogen production, prospects for carbon capture and storage, options for hydrogen storage on vehicles, fuel cells, and fuel cell vehicles. Each of the many facets of hydrogen energy is discussed and the challenges to be faced are addressed. The authors acknowledge it is not possible to reach a simple, unequivocal conclusion regarding overall prospects, since the international energy scene is so complex, and predicting long-term futures is so notoriously difficult. Nevertheless, the reader will be given compelling pointers indicative of the way in which events might develop. This topical book is ideal for undergraduates, postgraduates and academics with an interest in hydrogen energy. Government agencies and energy professionals will also find this content to be a useful reference source.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|