Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
There is no question that the cohomology of infinite dimensional Lie algebras deserves a brief and separate mono graph. This subject is not cover d by any of the tradition al branches of mathematics and is characterized by relative ly elementary proofs and varied application. Moreover, the subject matter is widely scattered in various research papers or exists only in verbal form. The theory of infinite-dimensional Lie algebras differs markedly from the theory of finite-dimensional Lie algebras in that the latter possesses powerful classification theo rems, which usually allow one to "recognize" any finite dimensional Lie algebra (over the field of complex or real numbers), i.e., find it in some list. There are classifica tion theorems in the theory of infinite-dimensional Lie al gebras as well, but they are encumbered by strong restric tions of a technical character. These theorems are useful mainly because they yield a considerable supply of interest ing examples. We begin with a list of such examples, and further direct our main efforts to their study."
This book is the result of reworking part of a rather lengthy course of lectures of which we delivered several versions at the Leningrad and Moscow Universities. In these lectures we presented an introduction to the fundamental topics of topology: homology theory, homotopy theory, theory of bundles, and topology of manifolds. The structure of the course was well determined by the guiding term elementary topology, whose main significance resides in the fact that it made us use a rather simple apparatus. tn this book we have retained {hose sections of the course where algebra plays a subordinate role. We plan to publish the more algebraic part of the lectures as a separate book. Reprocessing the lectures to produce the book resulted in the profits and losses inherent in such a situation: the rigour has increased to the detriment of the intuitiveness, the geometric descriptions have been replaced by formulas needing interpretations, etc. Nevertheless, it seems to us tha.t the book retains the main qualities of our lectures: their elementary, systematic, and pedagogical features. The preparation of the reader is assumed to be limi ted to the usual knowledge of set .theory, algebra, and calculus which mathematics students should master after the first year and a half of studies. The exposition is accompanied by examples and exercises. We hope that the book can be used as a topology textbook."
|
You may like...
|