Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Almost fifteen years ago, because of the phenomenal growth in the power of computer simulations, The University of Georgia formed the first institu tional unit devoted to the use of simulations in research and teaching: The Center for Simulational Physics. As the international simulations community expanded further, we sensed a need for a meeting place for both experi enced simulators and neophytes to discuss new techniques and recent results in an environment which promoted extended discussion. As a consequence, the Center for Simulational Physics established an annual workshop on Re cent Developments in Computer Simulation Studies in Condensed Matter Physics. This year's workshop was the thirteenth in this series, and the con tinued interest shown by the scientific community demonstrates quite clearly the useful purpose that these meetings have served. The latest workshop was held at The University of Georgia, February 21-25, 2000, and these proceed ings provide a "status report" on a number of important topics. This volume is published with the goal of timely dissemination of the material to a wider audience. We wish to offer a special thanks to the IBM Corporation for its generous support of this year's workshop. We also acknowledge the Donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Science Foundation for partial support. This volume contains both invited papers and contributed presentations on problems in both classical and quantum condensed matter physics."
Monte Carlo computer simulations are now a standard tool in scientific fields such as condensed-matter physics, including surface-physics and applied-physics problems (metallurgy, diffusion, and segregation, etc. ), chemical physics, including studies of solutions, chemical reactions, polymer statistics, etc., and field theory. With the increasing ability of this method to deal with quantum-mechanical problems such as quantum spin systems or many-fermion problems, it will become useful for other questions in the fields of elementary-particle and nuclear physics as well. The large number of recent publications dealing either with applications or further development of some aspects of this method is a clear indication that the scientific community has realized the power and versatility of Monte Carlo simula tions, as well as of related simulation techniques such as "molecular dynamics" and "Langevin dynamics," which are only briefly mentioned in the present book. With the increasing availability of recent very-high-speed general-purpose computers, many problems become tractable which have so far escaped satisfactory treatment due to prac tical limitations (too small systems had to be chosen, or too short averaging times had to be used). While this approach is admittedly rather expensive, two cheaper alternatives have become available, too: (i) array or vector processors specifical ly suited for wide classes of simulation purposes; (ii) special purpose processors, which are built for a more specific class of problems or, in the extreme case, for the simulation of one single model system."
More than a decade ago, because of the phenomenal growth in the power of computer simulations, The University of Georgia formed the first institutional unit devoted to the use of simulations in research and teaching: The Center for Simulational Physics. As the simulations community expanded further, we sensed a need for a meeting place for both experienced simulators and neophytes to discuss new techniques and recent results in an environment which promoted extended discussion. As a consequence, the Center for Sim ulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics. This year's workshop was the twelfth in this series. It was held at The University of Geor gia, March 8-12, 1999 as an unofficial satellite conference to the Centennial Meeting of the American Physical Society in Atlanta, GA. The continued interest shown by the scientific community demonstrates quite clearly the useful purpose which the series has served. These proceedings provide a "sta tus report" on a number of important topics. This volume is published with the goal of timely dissemination of the material to a wider audience. We wish to offer special thanks to IBM Corporation for their generous support of this year's workshop. This volume contains both invited papers and contributed presentations on problems in both classical and quantum condensed matter physics. We hope that each reader will benefit from specialized results as well as profit from exposure to new algorithms, methods of analysis, and conceptual devel opments."
Over the last 30 years, Professor David P. Landau's trailblazing research achievements and influential leadership have helped establish computer sim ulation as a powerful and incisive mode of scientific investigation, now on a par in the physical sciences with experimental and theoretical research. This year, we were very pleased to organize a special one-day symposium honor ing the 60th birthday of our distinguished colleague and friend. This event was held in conjunction with and immediately following the annual computer simulations workshop that Professor Landau founded 14 years ago. Many of the papers presented at this honorary symposium are integrated into this pro ceedings volume, and the accompanying photograph of participants serves to commemorate this very special event. This volume contains both invited papers and contributed presentations on problems in both classical and quantum condensed matter physics. We hope that each reader will benefit from specialized results as well as profit from exposure to new algorithms, methods of analysis, and conceptual devel opments."
Deals with the computer simulation of complex physical sys- tems encounteredin condensed-matter physics and statistical mechanics as well as in related fields such as metallurgy, polymer research,lattice gauge theory and quantummechanics.
In the seven years since this volume first appeared. there has been an enormous expansion of the range of problems to which Monte Carlo computer simulation methods have been applied. This fact has already led to the addition of a companion volume ("Applications of the Monte Carlo Method in Statistical Physics", Topics in Current Physics. Vol . 36), edited in 1984, to this book. But the field continues to develop further; rapid progress is being made with respect to the implementation of Monte Carlo algorithms, the construction of special-purpose computers dedicated to exe cute Monte Carlo programs, and new methods to analyze the "data" generated by these programs. Brief descriptions of these and other developments, together with numerous addi tional references, are included in a new chapter , "Recent Trends in Monte Carlo Simulations" , which has been written for this second edition. Typographical correc tions have been made and fuller references given where appropriate, but otherwise the layout and contents of the other chapters are left unchanged. Thus this book, together with its companion volume mentioned above, gives a fairly complete and up to-date review of the field. It is hoped that the reduced price of this paperback edition will make it accessible to a wide range of scientists and students in the fields to which it is relevant: theoretical phYSics and physical chemistry , con densed-matter physics and materials science, computational physics and applied mathematics, etc.
|
You may like...
Short Things - Tales Inspired by Who…
Alan Dean Foster, Kristine Kathryn Rusch
Paperback
R502
Discovery Miles 5 020
|