0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (4)
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 7 of 7 matches in All Departments

BERRU Predictive Modeling - Best Estimate Results with Reduced Uncertainties (Hardcover, 1st ed. 2019): Dan Gabriel Cacuci BERRU Predictive Modeling - Best Estimate Results with Reduced Uncertainties (Hardcover, 1st ed. 2019)
Dan Gabriel Cacuci
R4,723 Discovery Miles 47 230 Ships in 12 - 17 working days

This book addresses the experimental calibration of best-estimate numerical simulation models. The results of measurements and computations are never exact. Therefore, knowing only the nominal values of experimentally measured or computed quantities is insufficient for applications, particularly since the respective experimental and computed nominal values seldom coincide. In the author's view, the objective of predictive modeling is to extract "best estimate" values for model parameters and predicted results, together with "best estimate" uncertainties for these parameters and results. To achieve this goal, predictive modeling combines imprecisely known experimental and computational data, which calls for reasoning on the basis of incomplete, error-rich, and occasionally discrepant information. The customary methods used for data assimilation combine experimental and computational information by minimizing an a priori, user-chosen, "cost functional" (usually a quadratic functional that represents the weighted errors between measured and computed responses). In contrast to these user-influenced methods, the BERRU (Best Estimate Results with Reduced Uncertainties) Predictive Modeling methodology developed by the author relies on the thermodynamics-based maximum entropy principle to eliminate the need for relying on minimizing user-chosen functionals, thus generalizing the "data adjustment" and/or the "4D-VAR" data assimilation procedures used in the geophysical sciences. The BERRU predictive modeling methodology also provides a "model validation metric" which quantifies the consistency (agreement/disagreement) between measurements and computations. This "model validation metric" (or "consistency indicator") is constructed from parameter covariance matrices, response covariance matrices (measured and computed), and response sensitivities to model parameters. Traditional methods for computing response sensitivities are hampered by the "curse of dimensionality," which makes them impractical for applications to large-scale systems that involve many imprecisely known parameters. Reducing the computational effort required for precisely calculating the response sensitivities is paramount, and the comprehensive adjoint sensitivity analysis methodology developed by the author shows great promise in this regard, as shown in this book. After discarding inconsistent data (if any) using the consistency indicator, the BERRU predictive modeling methodology provides best-estimate values for predicted parameters and responses along with best-estimate reduced uncertainties (i.e., smaller predicted standard deviations) for the predicted quantities. Applying the BERRU methodology yields optimal, experimentally validated, "best estimate" predictive modeling tools for designing new technologies and facilities, while also improving on existing ones.

The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume III - Overcoming the Curse of Dimensionality:... The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume III - Overcoming the Curse of Dimensionality: Nonlinear Systems (Hardcover, 1st ed. 2023)
Dan Gabriel Cacuci
R5,004 Discovery Miles 50 040 Ships in 10 - 15 working days

This text describes a comprehensive adjoint sensitivity analysis methodology (C-ASAM), developed by the author, enabling the efficient and exact computation of arbitrarily high-order functional derivatives of model responses to model parameters in large-scale systems. The model’s responses can be either scalar-valued functionals of the model’s parameters and state variables (as customarily encountered, e.g., in optimization problems) or general function-valued responses, which are often of interest but are currently not amenable to efficient sensitivity analysis. The C-ASAM framework is set in linearly increasing Hilbert spaces, each of state-function-dimensionality, as opposed to exponentially increasing parameter-dimensional spaces, thereby breaking the so-called “curse of dimensionality” in sensitivity and uncertainty analysis. The C-ASAM applies to any model; the larger the number of model parameters, the more efficient the C-ASAM becomes for computing arbitrarily high-order response sensitivities. The text includes illustrative paradigm problems which are fully worked-out to enable the thorough understanding of the C-ASAM’s principles and their practical application. The book will be helpful to those working in the fields of sensitivity analysis, uncertainty quantification, model validation, optimization, data assimilation, model calibration, sensor fusion, reduced-order modelling, inverse problems and predictive modelling. It serves as a textbook or as supplementary reading for graduate course on these topics, in academic departments in the natural, biological, and physical sciences and engineering. This Volume Three, the third of three, covers systems that are nonlinear in the state variables, model parameters and associated responses. The selected illustrative paradigm problems share these general characteristics. A separate Volume One covers systems that are linear in the state variables.

The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume I - Overcoming the Curse of Dimensionality: Linear... The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume I - Overcoming the Curse of Dimensionality: Linear Systems (Hardcover, 1st ed. 2022)
Dan Gabriel Cacuci
R4,385 Discovery Miles 43 850 Ships in 12 - 17 working days

The computational models of physical systems comprise parameters, independent and dependent variables. Since the physical processes themselves are seldom known precisely and since most of the model parameters stem from experimental procedures which are also subject to imprecisions, the results predicted by these models are also imprecise, being affected by the uncertainties underlying the respective model. The functional derivatives (also called "sensitivities") of results (also called "responses") produced by mathematical/computational models are needed for many purposes, including: (i) understanding the model by ranking the importance of the various model parameters; (ii) performing "reduced-order modeling" by eliminating unimportant parameters and/or processes; (iii) quantifying the uncertainties induced in a model response due to model parameter uncertainties; (iv) performing "model validation," by comparing computations to experiments to address the question "does the model represent reality?" (v) prioritizing improvements in the model; (vi) performing data assimilation and model calibration as part of forward "predictive modeling" to obtain best-estimate predicted results with reduced predicted uncertainties; (vii) performing inverse "predictive modeling"; (viii) designing and optimizing the system. This 3-Volume monograph describes a comprehensive adjoint sensitivity analysis methodology, developed by the author, which enables the efficient and exact computation of arbitrarily high-order sensitivities of model responses in large-scale systems comprising many model parameters. The qualifier "comprehensive" is employed to highlight that the model parameters considered within the framework of this methodology also include the system's uncertain boundaries and internal interfaces in phase-space. The model's responses can be either scalar-valued functionals of the model's parameters and state variables (e.g., as customarily encountered in optimization problems) or general function-valued responses. Since linear operators admit bona-fide adjoint operators, responses of models that are linear in the state functions (i.e., dependent variables) can depend simultaneously on both the forward and the adjoint state functions. Hence, the sensitivity analysis of such responses warrants the treatment of linear systems in their own right, rather than treating them as particular cases of nonlinear systems. This is in contradistinction to responses for nonlinear systems, which can depend only on the forward state functions, since nonlinear operators do not admit bona-fide adjoint operators (only a linearized form of a nonlinear operator may admit an adjoint operator). Thus, Volume 1 of this book presents the mathematical framework of the nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (abbreviated as "nth-CASAM-L"), which is conceived for the most efficient computation of exactly obtained mathematical expressions of arbitrarily-high-order (nth-order) sensitivities of a generic system response with respect to all of the parameters underlying the respective forward/adjoint systems. Volume 2 of this book presents the application of the nth-CASAM-L to perform a fourth-order sensitivity and uncertainty analysis of an OECD/NEA reactor physics benchmark which is representative of a large-scale model comprises many (21,976) uncertain parameters, thereby amply illustrating the unique potential of the nth-CASAM-L to enable the exact and efficient computation of chosen high-order response sensitivities to model parameters. Volume 3 of this book presents the "nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems" (abbreviation: nth-CASAM-N) for the practical, efficient, and exact computation of arbitrarily-high order sensitivities of responses to model parameters for systems that are also nonlinear in their underlying state functions. Such computations are not feasible with any other methodology. The application of the nth-CASAM-L and the nth-CASAM-N overcomes the so-called "curse of dimensionality" in sensitivity and uncertainty analysis, thus revolutionizing all of the fields of activities which require accurate computation of response sensitivities. Since this monograph includes many illustrative, fully worked-out, paradigm problems, it can serve as a textbook or as supplementary reading for graduate courses in academic departments in the natural sciences and engineering.

The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume II - Overcoming the Curse of Dimensionality:... The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume II - Overcoming the Curse of Dimensionality: Large-Scale Application (Hardcover, 1st ed. 2023)
Dan Gabriel Cacuci, Ruixian Fang
R4,397 Discovery Miles 43 970 Ships in 12 - 17 working days

This text describes a comprehensive adjoint sensitivity analysis methodology (nth-CASAM), developed by the author, which enablesthe efficient and exact computation of arbitrarily high-order functional derivatives of model responses to model parameters in large-scale systems. The nth-CASAM framework is set in linearly increasing Hilbert spaces, each of state-function-dimensionality, as opposed to exponentially increasing parameter-dimensional spaces, thereby overcoming the so-called “curse of dimensionality” in sensitivity and uncertainty analysis. The nth-CASAM is applicable to any model; the larger the number of model parameters, the more efficient the nth-CASAM becomes for computing arbitrarily high-order response sensitivities. The book will be helpful to those working in the fields of sensitivity analysis, uncertainty quantification, model validation, optimization, data assimilation, model calibration, sensor fusion, reduced-order modelling, inverse problems and predictive modelling. This Volume Two, the second of three, presents the large-scale application of the nth-CASAM to perform a representative fourth-order sensitivity analysis of the Polyethylene-Reflected Plutonium benchmark described in the Nuclear Energy Agency (NEA) International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook. This benchmark is modeled mathematically by the Boltzmann particle transport equation, involving 21,976 imprecisely-known parameters, the numerical solution of which requires representative large-scale computations. The sensitivity analysis presented in this volume is the most comprehensive ever performed in the field of reactor physics and the results presented in this book prove, perhaps counter-intuitively, that many of the 4th-order sensitivities are much larger than the corresponding 3rd-order ones, which are, in turn, much larger than the 2nd-order ones, all of which are much larger than the 1st-order sensitivities. Currently, the nth-CASAM is the only known methodology which enables such large-scale computations of exactly obtained expressions of arbitrarily-high-order response sensitivities.

Computational Methods for Data Evaluation and Assimilation (Paperback): Dan Gabriel Cacuci, Ionel Michael Navon, Mihaela... Computational Methods for Data Evaluation and Assimilation (Paperback)
Dan Gabriel Cacuci, Ionel Michael Navon, Mihaela Ionescu-Bujor
R1,895 Discovery Miles 18 950 Ships in 12 - 17 working days

Data evaluation and data combination require the use of a wide range of probability theory concepts and tools, from deductive statistics mainly concerning frequencies and sample tallies to inductive inference for assimilating non-frequency data and a priori knowledge. Computational Methods for Data Evaluation and Assimilation presents interdisciplinary methods for integrating experimental and computational information. This self-contained book shows how the methods can be applied in many scientific and engineering areas. After presenting the fundamentals underlying the evaluation of experimental data, the book explains how to estimate covariances and confidence intervals from experimental data. It then describes algorithms for both unconstrained and constrained minimization of large-scale systems, such as time-dependent variational data assimilation in weather prediction and similar applications in the geophysical sciences. The book also discusses several basic principles of four-dimensional variational assimilation (4D VAR) and highlights specific difficulties in applying 4D VAR to large-scale operational numerical weather prediction models.

Computational Methods for Data Evaluation and Assimilation (Hardcover, New): Dan Gabriel Cacuci, Ionel Michael Navon, Mihaela... Computational Methods for Data Evaluation and Assimilation (Hardcover, New)
Dan Gabriel Cacuci, Ionel Michael Navon, Mihaela Ionescu-Bujor
R5,139 Discovery Miles 51 390 Ships in 12 - 17 working days

Data evaluation and data combination require the use of a wide range of probability theory concepts and tools, from deductive statistics mainly concerning frequencies and sample tallies to inductive inference for assimilating non-frequency data and a priori knowledge. Computational Methods for Data Evaluation and Assimilation presents interdisciplinary methods for integrating experimental and computational information. This self-contained book shows how the methods can be applied in many scientific and engineering areas. After presenting the fundamentals underlying the evaluation of experimental data, the book explains how to estimate covariances and confidence intervals from experimental data. It then describes algorithms for both unconstrained and constrained minimization of large-scale systems, such as time-dependent variational data assimilation in weather prediction and similar applications in the geophysical sciences. The book also discusses several basic principles of four-dimensional variational assimilation (4D VAR) and highlights specific difficulties in applying 4D VAR to large-scale operational numerical weather prediction models.

The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume I - Overcoming the Curse of Dimensionality: Linear... The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume I - Overcoming the Curse of Dimensionality: Linear Systems (1st ed. 2022)
Dan Gabriel Cacuci
R4,488 Discovery Miles 44 880 Ships in 10 - 15 working days

The computational models of physical systems comprise parameters, independent and dependent variables. Since the physical processes themselves are seldom known precisely and since most of the model parameters stem from experimental procedures which are also subject to imprecisions, the results predicted by these models are also imprecise, being affected by the uncertainties underlying the respective model. The functional derivatives (also called “sensitivities”) of results (also called “responses”) produced by mathematical/computational models are needed for many purposes, including: (i) understanding the model by ranking the importance of the various model parameters; (ii) performing “reduced-order modeling” by eliminating unimportant parameters and/or processes; (iii) quantifying the uncertainties induced in a model response due to model parameter uncertainties; (iv) performing “model validation,” by comparing computations to experiments to address the question “does the model represent reality?” (v) prioritizing improvements in the model; (vi) performing data assimilation and model calibration as part of forward “predictive modeling” to obtain best-estimate predicted results with reduced predicted uncertainties; (vii) performing inverse “predictive modeling”; (viii) designing and optimizing the system. This 3-Volume monograph describes a comprehensive adjoint sensitivity analysis methodology, developed by the author, which enables the efficient and exact computation of arbitrarily high-order sensitivities of model responses in large-scale systems comprising many model parameters. The qualifier “comprehensive” is employed to highlight that the model parameters considered within the framework of this methodology also include the system’s uncertain boundaries and internal interfaces in phase-space. The model’s responses can be either scalar-valued functionals of the model’s parameters and state variables (e.g., as customarily encountered in optimization problems) or general function-valued responses. Since linear operators admit bona-fide adjoint operators, responses of models that are linear in the state functions (i.e., dependent variables) can depend simultaneously on both the forward and the adjoint state functions. Hence, the sensitivity analysis of such responses warrants the treatment of linear systems in their own right, rather than treating them as particular cases of nonlinear systems. This is in contradistinction to responses for nonlinear systems, which can depend only on the forward state functions, since nonlinear operators do not admit bona-fide adjoint operators (only a linearized form of a nonlinear operator may admit an adjoint operator). Thus, Volume 1 of this book presents the mathematical framework of the nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (abbreviated as “nth-CASAM-L”), which is conceived for the most efficient computation of exactly obtained mathematical expressions of arbitrarily-high-order (nth-order) sensitivities of a generic system response with respect to all of the parameters underlying the respective forward/adjoint systems. Volume 2 of this book presents the application of the nth-CASAM-L to perform a fourth-order sensitivity and uncertainty analysis of an OECD/NEA reactor physics benchmark which is representative of a large-scale model comprises many (21,976) uncertain parameters, thereby amply illustrating the unique potential of the nth-CASAM-L to enable the exact and efficient computation of chosen high-order response sensitivities to model parameters. Volume 3 of this book presents the “nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviation: nth-CASAM-N) for the practical, efficient, and exact computation of arbitrarily-high order sensitivities of responses to model parameters for systems that are also nonlinear in their underlying state functions. Such computations are not feasible with any other methodology. The application of the nth-CASAM-L and the nth-CASAM-N overcomes the so-called “curse of dimensionality” in sensitivity and uncertainty analysis, thus revolutionizing all of the fields of activities which require accurate computation of response sensitivities. Since this monograph includes many illustrative, fully worked-out, paradigm problems, it can serve as a textbook or as supplementary reading for graduate courses in academic departments in the natural sciences and engineering.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Journal, Ed. by Bradford Torrey…
Henry David Thoreau Paperback R670 Discovery Miles 6 700
Recognition - An Anthology Of South…
Paperback R395 R309 Discovery Miles 3 090
Rumors of Revolution - Song, Sentiment…
Jennifer Tsien Hardcover R2,674 Discovery Miles 26 740
South Africa, Settler Colonialism And…
Thiven Reddy Paperback R330 R258 Discovery Miles 2 580
A Companion to the American Short Story
A Bendixen Paperback R1,333 Discovery Miles 13 330
The Indian Empire - Its People, History…
W. W hunter Hardcover R2,625 Discovery Miles 26 250
A Manifesto For Social Change - How To…
Moeletsi Mbeki, Nobantu Mbeki Paperback  (4)
R230 R180 Discovery Miles 1 800
Arising from Bondage - A History of the…
Ron Ramdin Hardcover R2,598 Discovery Miles 25 980
The Formation of the Colonial State in…
Hayden J Bellenoit Hardcover R4,415 Discovery Miles 44 150
Imperial Culture in Antipodean Cities…
J. Griffiths Hardcover R2,922 R1,924 Discovery Miles 19 240

 

Partners