Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincare, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors. An essential primer for undergraduates making the leap to graduate work, the book begins with free groups--actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples. Accessible to students who have taken a first course in abstract algebra, Office Hours with a Geometric Group Theorist also features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.
The study of the mapping class group Mod("S") is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. "A Primer on Mapping Class Groups" begins by explaining the main group-theoretical properties of Mod("S"), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmuller space and its geometry, and uses the action of Mod("S") on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification."
This book provides a detailed exposition of William Thurston's work on surface homeomorphisms, available here for the first time in English. Based on material of Thurston presented at a seminar in Orsay from 1976 to 1977, it covers topics such as the space of measured foliations on a surface, the Thurston compactification of Teichmuller space, the Nielsen-Thurston classification of surface homeomorphisms, and dynamical properties of pseudo-Anosov diffeomorphisms. Thurston never published the complete proofs, so this text is the only resource for many aspects of the theory. Thurston was awarded the prestigious Fields Medal in 1982 as well as many other prizes and honors, and is widely regarded to be one of the major mathematical figures of our time. Today, his important and influential work on surface homeomorphisms is enjoying continued interest in areas ranging from the Poincare conjecture to topological dynamics and low-dimensional topology. Conveying the extraordinary richness of Thurston's mathematical insight, this elegant and faithful translation from the original French will be an invaluable resource for the next generation of researchers and students."
|
You may like...
|