![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
Graph Theory presents a natural, reader-friendly way to learn some of the essential ideas of graph theory starting from first principles. The format is similar to the companion text, Combinatorics: A Problem Oriented Approach also by Daniel A. Marcus, in that it combines the features of a textbook with those of a problem workbook. The material is presented through a series of approximately 360 strategically placed problems with connecting text. This is supplemented by 280 additional problems that are intended to be used as homework assignments. Concepts of graph theory are introduced, developed, and reinforced by working through leading questions posed in the problems. This problem-oriented format is intended to promote active involvement by the reader while always providing clear direction. This approach figures prominently on the presentation of proofs, which become more frequent and elaborate as the book progresses. Arguments are arranged in digestible chunks and always appear along with concrete examples to keep the readers firmly grounded in their motivation. Spanning tree algorithms, Euler paths, Hamilton paths and cycles, planar graphs, independence and covering, connections and obstructions, and vertex and edge colorings make up the core of the book. Hall's Theorem, the Konig-Egervary Theorem, Dilworth's Theorem and the Hungarian algorithm to the optional assignment problem, matrices, and latin squares are also explored.
Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
|
![]() ![]() You may like...
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet
Paperback
![]()
|