0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

An Introduction to Statistical Learning - with Applications in R (Paperback, 2nd ed. 2021): Gareth James, Daniela Witten,... An Introduction to Statistical Learning - with Applications in R (Paperback, 2nd ed. 2021)
Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
R1,563 Discovery Miles 15 630 Ships in 12 - 17 working days

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naive Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.

An Introduction to Statistical Learning - with Applications in Python (1st ed. 2023): Gareth James, Daniela Witten, Trevor... An Introduction to Statistical Learning - with Applications in Python (1st ed. 2023)
Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor
R2,776 Discovery Miles 27 760 Ships in 12 - 17 working days

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and  astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

An Introduction to Statistical Learning - with Applications in R (Hardcover, 2nd ed. 2021): Gareth James, Daniela Witten,... An Introduction to Statistical Learning - with Applications in R (Hardcover, 2nd ed. 2021)
Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
R2,354 R2,096 Discovery Miles 20 960 Save R258 (11%) Ships in 12 - 17 working days

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naive Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Trade Professional Drill Kit Cordless…
 (9)
R2,223 Discovery Miles 22 230
OMC! Gemstone Jewellery Kit
Kit R280 R129 Discovery Miles 1 290
Huntlea Original Two Tone Pillow Bed…
R650 R565 Discovery Miles 5 650
Conforming Bandage
R5 Discovery Miles 50
Professor Dumbledore Wizard Wand - In…
 (7)
R808 Discovery Miles 8 080
Vital Baby® NOURISH™ Store And Wean…
R149 Discovery Miles 1 490
Dunlop Pro Padel Balls (Green)(Pack of…
R199 R165 Discovery Miles 1 650
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Beast
Idris Elba, Sharlto Copley DVD R103 Discovery Miles 1 030
Sudocrem Skin & Baby Care Barrier Cream…
R128 Discovery Miles 1 280

 

Partners