Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
This book gives a state-of-the-art survey of current research in logic and philosophy of science, as viewed by invited speakers selected by the most prestigious international organization in the field. In particular, it gives a coherent picture of foundational research into the various sciences, both natural and social. In addition, it has special interest items such as symposia on interfaces between logic and methodology, semantics and semiotics, as well as updates on the current state of the field in Eastern Europe and the Far East.
This is the first of two volumes comprising the papers submitted for publication by the invited participants to the Tenth International Congress of Logic, Methodology and Philosophy of Science, held in Florence, August 1995. The Congress was held under the auspices of the International Union of History and Philosophy of Science, Division of Logic, Methodology and Philosophy of Science. The invited lectures published in the two volumes demonstrate much of what goes on in the fields of the Congress and give the state of the art of current research. The two volumes cover the traditional subdisciplines of mathematical logic and philosophical logic, as well as their interfaces with computer science, linguistics and philosophy. Philosophy of science is broadly represented, too, including general issues of natural sciences, social sciences and humanities. The papers in Volume One are concerned with logic, mathematical logic, the philosophy of logic and mathematics, and computer science.
The aim of this book is to give self-contained proofs of all basic results concerning the infinite-valued proposition al calculus of Lukasiewicz and its algebras, Chang's MV -algebras. This book is for self-study: with the possible exception of Chapter 9 on advanced topics, the only prere- quisite for the reader is some acquaintance with classical propositional logic, and elementary algebra and topology. In this book it is not our aim to give an account of Lukasiewicz's motivations for adding new truth values: readers interested in this topic will find appropriate references in Chapter 10. Also, we shall not explain why Lukasiewicz infinite-valued propositionallogic is a ba- sic ingredient of any logical treatment of imprecise notions: Hajek's book in this series on Trends in Logic contains the most authorita- tive explanations. However, in order to show that MV-algebras stand to infinite-valued logic as boolean algebras stand to two-valued logic, we shall devote Chapter 5 to Ulam's game of Twenty Questions with lies/errors, as a natural context where infinite-valued propositions, con- nectives and inferences are used. While several other semantics for infinite-valued logic are known in the literature-notably Giles' game- theoretic semantics based on subjective probabilities-still the transi- tion from two-valued to many-valued propositonallogic can hardly be modelled by anything simpler than the transformation of the familiar game of Twenty Questions into Ulam game with lies/errors.
The aim of this book is to give self-contained proofs of all basic results concerning the infinite-valued proposition al calculus of Lukasiewicz and its algebras, Chang's MV -algebras. This book is for self-study: with the possible exception of Chapter 9 on advanced topics, the only prere- quisite for the reader is some acquaintance with classical propositional logic, and elementary algebra and topology. In this book it is not our aim to give an account of Lukasiewicz's motivations for adding new truth values: readers interested in this topic will find appropriate references in Chapter 10. Also, we shall not explain why Lukasiewicz infinite-valued propositionallogic is a ba- sic ingredient of any logical treatment of imprecise notions: Hajek's book in this series on Trends in Logic contains the most authorita- tive explanations. However, in order to show that MV-algebras stand to infinite-valued logic as boolean algebras stand to two-valued logic, we shall devote Chapter 5 to Ulam's game of Twenty Questions with lies/errors, as a natural context where infinite-valued propositions, con- nectives and inferences are used. While several other semantics for infinite-valued logic are known in the literature-notably Giles' game- theoretic semantics based on subjective probabilities-still the transi- tion from two-valued to many-valued propositonallogic can hardly be modelled by anything simpler than the transformation of the familiar game of Twenty Questions into Ulam game with lies/errors.
This is the first of two volumes comprising the papers submitted for publication by the invited participants to the Tenth International Congress of Logic, Methodology and Philosophy of Science, held in Florence, August 1995. The Congress was held under the auspices of the International Union of History and Philosophy of Science, Division of Logic, Methodology and Philosophy of Science. The invited lectures published in the two volumes demonstrate much of what goes on in the fields of the Congress and give the state of the art of current research. The two volumes cover the traditional subdisciplines of mathematical logic and philosophical logic, as well as their interfaces with computer science, linguistics and philosophy. Philosophy of science is broadly represented, too, including general issues of natural sciences, social sciences and humanities. The papers in Volume One are concerned with logic, mathematical logic, the philosophy of logic and mathematics, and computer science.
This book gives a state-of-the-art survey of current research in logic and philosophy of science, as viewed by invited speakers selected by the most prestigious international organization in the field. In particular, it gives a coherent picture of foundational research into the various sciences, both natural and social. In addition, it has special interest items such as symposia on interfaces between logic and methodology, semantics and semiotics, as well as updates on the current state of the field in Eastern Europe and the Far East.
This book constitutes the refereed proceedings of the 5th Kurt G
del Colloquium on Computational Logic and Proof Theory, KGC '97,
held in Vienna, Austria, in August 1997.
This books presents the refereed proceedings of the Fifth
International Workshop on Analytic Tableaux and Related Methods,
TABLEAUX '96, held in Terrasini near Palermo, Italy, in May
1996.
The Third Kurt G-del Symposium, KGC'93, held in Brno, Czech Republic, August1993, is the third in a series of biennial symposia on logic, theoretical computer science, and philosophy of mathematics. The aim of this meeting wasto bring together researchers working in the fields of computational logic and proof theory. While proof theory traditionally is a discipline of mathematical logic, the central activity in computational logic can be foundin computer science. In both disciplines methods were invented which arecrucial to one another. This volume contains the proceedings of the symposium. It contains contributions by 36 authors from 10 different countries. In addition to 10 invited papers there are 26 contributed papers selected from over 50 submissions.
This short book, geared towards undergraduate students of computer science and mathematics, is specifically designed for a first course in mathematical logic. A proof of Godel's completeness theorem and its main consequences is given using Robinson's completeness theorem and Godel's compactness theorem for propositional logic. The reader will familiarize himself with many basic ideas and artifacts of mathematical logic: a non-ambiguous syntax, logical equivalence and consequence relation, the Davis-Putnam procedure, Tarski semantics, Herbrand models, the axioms of identity, Skolem normal forms, nonstandard models and, interestingly enough, proofs and refutations viewed as graphic objects. The mathematical prerequisites are minimal: the book is accessible to anybody having some familiarity with proofs by induction. Many exercises on the relationship between natural language and formal proofs make the book also interesting to a wide range of students of philosophy and linguistics.
|
You may like...
|