![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This book presents the basic concepts of software reliability growth models (SRGMs), ranging from fundamental to advanced level. It discusses SRGM based on the non-homogeneous Poisson process (NHPP), which has been a quite successful tool in practical software reliability engineering. These models consider the debugging process as a counting process characterized by its mean value function. Model parameters have been estimated by using either the maximum likelihood method or regression. NHPP SRGMs based on inverse Weibull, generalized inverse Weibull, extended inverse Weibull, generalized extended inverse Weibull, and delayed S-shaped have been focused upon.  Review of literature on SRGM has been included from the scratch to recent developments, applicable in artificial neural networks, machine learning, artificial intelligence, data-driven approaches, fault-detection, fault-correction processes, and also in random environmental conditions. This book is designed for practitioners and researchers at all levels of competency, and also targets groups who need information on software reliability engineering.
This book collects select contributions presented at the International Conference on Importance of Statistics in Global Emerging (ISGES 2020) held at the Department of Mathematics and Statistics, University of Pune, Maharashtra, India, from 2–4 January 2020. It discusses recent developments in several areas of statistics with applications of a wide range of key topics, including small area estimation techniques, Bayesian models for small areas, ranked set sampling, fuzzy supply chain, probabilistic supply chain models, dynamic Gaussian process models, grey relational analysis and multi-item inventory models, and more. The possible use of other models, including generalized Lindley shared frailty models, Benktander Gibrat risk model, decision-consistent randomization method for SMART designs and different reliability models are also discussed. This book includes detailed worked examples and case studies that illustrate the applications of recently developed statistical methods, making it a valuable resource for applied statisticians, students, research project leaders and practitioners from various marginal disciplines and interdisciplinary research.Â
This book presents the basic concepts of software reliability growth models (SRGMs), ranging from fundamental to advanced level. It discusses SRGM based on the non-homogeneous Poisson process (NHPP), which has been a quite successful tool in practical software reliability engineering. These models consider the debugging process as a counting process characterized by its mean value function. Model parameters have been estimated by using either the maximum likelihood method or regression. NHPP SRGMs based on inverse Weibull, generalized inverse Weibull, extended inverse Weibull, generalized extended inverse Weibull, and delayed S-shaped have been focused upon. Review of literature on SRGM has been included from the scratch to recent developments, applicable in artificial neural networks, machine learning, artificial intelligence, data-driven approaches, fault-detection, fault-correction processes, and also in random environmental conditions. This book is designed for practitioners and researchers at all levels of competency, and also targets groups who need information on software reliability engineering.
This book collects select contributions presented at the International Conference on Importance of Statistics in Global Emerging (ISGES 2020) held at the Department of Mathematics and Statistics, University of Pune, Maharashtra, India, from 2-4 January 2020. It discusses recent developments in several areas of statistics with applications of a wide range of key topics, including small area estimation techniques, Bayesian models for small areas, ranked set sampling, fuzzy supply chain, probabilistic supply chain models, dynamic Gaussian process models, grey relational analysis and multi-item inventory models, and more. The possible use of other models, including generalized Lindley shared frailty models, Benktander Gibrat risk model, decision-consistent randomization method for SMART designs and different reliability models are also discussed. This book includes detailed worked examples and case studies that illustrate the applications of recently developed statistical methods, making it a valuable resource for applied statisticians, students, research project leaders and practitioners from various marginal disciplines and interdisciplinary research.
|
![]() ![]() You may like...
Canyaking Adventure - Footprint Reading…
National Geographic, Rob Waring
Paperback
R308
Discovery Miles 3 080
|