![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
This is the definitive guide to X-parameters, written by the original inventors and developers of this powerful new paradigm for nonlinear RF and microwave components and systems. Learn how to use X-parameters to overcome intricate problems in nonlinear RF and microwave engineering. The general theory behind X-parameters is carefully and intuitively introduced, and then simplified down to specific, practical cases, providing you with useful approximations that will greatly reduce the complexity of measuring, modeling and designing for nonlinear regimes of operation. Containing real-world case studies, definitions of standard symbols and notation, detailed derivations within the appendices, and exercises with solutions, this is the definitive stand-alone reference for researchers, engineers, scientists and students looking to remain on the cutting-edge of RF and microwave engineering.
Discover the nonlinear methods and tools needed to design real-world microwave circuits with this tutorial guide. Balancing theoretical background with practical tools and applications, it covers everything from the basic properties of nonlinear systems such as gain compression, intermodulation and harmonic distortion, to nonlinear circuit analysis and simulation algorithms, and state-of-the-art equivalent circuit and behavioral modeling techniques. Model formulations discussed in detail include time-domain transistor compact models and frequency-domain linear and nonlinear scattering models. Learn how to apply these tools to designing real circuits with the help of a power amplifier design example, which covers all stages from active device model extraction and the selection of bias and terminations, through to performance verification. Realistic examples, illustrative insights and clearly conveyed mathematical formalism make this an essential learning aid for both professionals working in microwave and RF engineering and graduate students looking for a hands-on guide to microwave circuit design.
Achieve accurate and reliable parameter extraction using this complete survey of state-of-the-art techniques and methods. A team of experts from industry and academia provides you with insights into a range of key topics, including parasitics, intrinsic extraction, statistics, extraction uncertainty, nonlinear and DC parameters, self-heating and traps, noise, and package effects. Learn how similar approaches to parameter extraction can be applied to different technologies. A variety of real-world industrial examples and measurement results show you how the theories and methods presented can be used in practice. Whether you use transistor models for evaluation of device processing and you need to understand the methods behind the models you use, or you want to develop models for existing and new device types, this is your complete guide to parameter extraction.
|
![]() ![]() You may like...
Functional Grammar and the Computer
John H. Connolly, Simon C. Dik, …
Hardcover
|