![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
model. They conclude that the models using three fitting parameters provide the best fit over a wide range of suctions. Models for soil-water characteristic curves are only useful if we have experimental data on which to base them. Agus, Leong and Rahardjo (Singapore) present a large number of experimental soil-water characteristic curves determined for two types of residual soil from Sigapore. They present data for eight different sites. This data set allows them to relate the parameters of the soil-water characteristic curves to index properties. They conclude that the relationships derived are suitable to pro vide a quick preliminary estimate of a soil-water characteristic curve. The importance of soil-water characteristic curves is emphasized by another con tribution dealing with this topic. Aung, Rahardjo, Leong and Toll (Singapore) inves tigate the relationship between mercury intrusion porosimetry measurements and soil-water characteristic curves. The porosimetry measurements are presented as soil-air characteristic curves. The slopes of the soil-air characteristic curves are found to be similar to the slopes of the soil-water characteristic curves. The equiv alent pore diameters calculated from the mercury entry value and the air entry value appear to be related. Therefore, it is suggested that porosimetry data can be used to construct an estimate of the soil-water characteristic curve."
Residual soils are found in many parts of the world. Like other soils, they are used extensively in construction, either to build upon, or as construction material. They are formed when the rate of rock weathering is more rapid than transportation of the weathered particles by e.g., water, gravity and wind, which results in a large share of the soils formed remaining in place. The soils typically retain many of the characteristics of the parent rock. In a tropical region, residual soil layers can be very thick, sometimes extending to hundreds of meters before reaching un-weathered rock. Unlike the more familiar transported sediment soil, the engineering properties and behaviour of tropical residual soils may vary widely from place to place depending upon the rock of origin and the local climate during their formation; and hence are more difficult to predict and model mathematically. Despite their abundance and significance our knowledge and understanding of these soils is not as extensive as that of transported sediment soil. Written by residual soil specialists from various parts of the world, this unique handbook presents data, knowledge and expertise on the subject. It provides insight into the engineering behaviour of tropical residual soils, which will be applicable to small or extensive construction works worldwide on such soils. This book covers almost all aspects of residual soils, from genesis, classification, formation, sampling and testing to behaviour of weakly bonded and unsaturated soil, volume change and shear strength. It features chapters on applications in slopes and foundation, as well as dedicated parts on residual soils in India, Hong Kong and Southeast Asia. A large number of graphs, tables, maps and references throughout the text provide further detail and insight. This volume is intended as a reference guide for practitioners, researchers and advanced students in civil, construction and geological engineering. Unique in its coverage of the subject, it may serve as a standard that benefits every engineer involved in geological, foundation and construction work in tropical residual soils.
model. They conclude that the models using three fitting parameters provide the best fit over a wide range of suctions. Models for soil-water characteristic curves are only useful if we have experimental data on which to base them. Agus, Leong and Rahardjo (Singapore) present a large number of experimental soil-water characteristic curves determined for two types of residual soil from Sigapore. They present data for eight different sites. This data set allows them to relate the parameters of the soil-water characteristic curves to index properties. They conclude that the relationships derived are suitable to pro vide a quick preliminary estimate of a soil-water characteristic curve. The importance of soil-water characteristic curves is emphasized by another con tribution dealing with this topic. Aung, Rahardjo, Leong and Toll (Singapore) inves tigate the relationship between mercury intrusion porosimetry measurements and soil-water characteristic curves. The porosimetry measurements are presented as soil-air characteristic curves. The slopes of the soil-air characteristic curves are found to be similar to the slopes of the soil-water characteristic curves. The equiv alent pore diameters calculated from the mercury entry value and the air entry value appear to be related. Therefore, it is suggested that porosimetry data can be used to construct an estimate of the soil-water characteristic curve."
|
You may like...
Parenting and Teen Drug Use - The Most…
Lawrence M. Scheier, William B. Hansen
Hardcover
R3,067
Discovery Miles 30 670
Understanding Drug Use and Abuse - A…
Benjamin P. Bowser, Carl O. Word, …
Hardcover
R4,631
Discovery Miles 46 310
Drugs in Africa - Histories and…
G. Klantschnig, N Carrier, …
Hardcover
R1,850
Discovery Miles 18 500
Empire Of Pain - The Secret History of…
Patrick Radden Keefe
Paperback
|