![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
The ICANNGA series of Conferences has been organised since 1993 and has a long history of promoting the principles and understanding of computational intelligence paradigms within the scientific community and is a reference for established workers in this area. Starting in Innsbruck, in Austria (1993), then to Ales in Prance (1995), Norwich in England (1997), Portoroz in Slovenia (1999), Prague in the Czech Republic (2001) and finally Roanne, in France (2003), the ICANNGA series has established itself for experienced workers in the field. The series has also been of value to young researchers wishing both to extend their knowledge and experience and also to meet internationally renowned experts. The 2005 Conference, the seventh in the ICANNGA series, will take place at the University of Coimbra in Portugal, drawing on the experience of previous events, and following the same general model, combining technical sessions, including plenary lectures by renowned scientists, with tutorials.
The papers in this volume present theoretical aspects and applications of artificial neural networks and genetic algorithms. Also included are papers on fuzzy logic, soft computing, and artificial intelligence. Fundamental issues are addressed such as the nonlinear approximation capabilities of neural networks and formal methods of data representation with topological properties. New elements in genetic algorithms are presented, for example, crossover methods and gene representation. Papers on applications of neural networks show how successful these methods are in a wide range of fields like meteorological and atmospheric pollution forecasts, furnace control, and system identification. Genetic algorithms are used to solve optimization problems related to shipping and computer vision. Fuzzy-logic-based techniques are applied to sociodynamic models and hybrid neuro-fuzzy models.
From the contents: Neural networks - theory and applications: NNs (= neural networks) classifier on continuous data domains- quantum associative memory - a new class of neuron-like discrete filters to image processing - modular NNs for improving generalisation properties - presynaptic inhibition modelling for image processing application - NN recognition system for a curvature primal sketch - NN based nonlinear temporal-spatial noise rejection system - relaxation rate for improving Hopfield network - Oja's NN and influence of the learning gain on its dynamics Genetic algorithms - theory and applications: transposition: a biological-inspired mechanism to use with GAs (= genetic algorithms) - GA for decision tree induction - optimising decision classifications using GAs - scheduling tasks with intertask communication onto multiprocessors by GAs - design of robust networks with GA - effect of degenerate coding on GAs - multiple traffic signal control using a GA - evolving musical harmonisation - niched-penalty approach for constraint handling in GAs - GA with dynamic population size - GA with dynamic niche clustering for multimodal function optimisation Soft computing and uncertainty: self-adaptation of evolutionary constructed decision trees by information spreading - evolutionary programming of near optimal NNs
Artificial neural networks and genetic algorithms both are areas of research which have their origins in mathematical models constructed in order to gain understanding of important natural processes. By focussing on the process models rather than the processes themselves, significant new computational techniques have evolved which have found application in a large number of diverse fields. This diversity is reflected in the topics which are subjects of the contributions to this volume. There are contributions reporting successful applications of the technology to the solution of industrial/commercial problems. This may well reflect the maturity of the technology, notably in the sense that 'real' users of modelling/prediction techniques are prepared to accept neural networks as a valid paradigm. Theoretical issues also receive attention, notably in connection with the radial basis function neural network. Contributions in the field of genetic algorithms reflect the wide range of current applications, including, for example, portfolio selection, filter design, frequency assignment, tuning of nonlinear PID controllers. These techniques are also used extensively for combinatorial optimisation problems.
|
You may like...
Careers - An Organisational Perspective
Melinde Coetzee, Dries Schreuder
Paperback
Confluence of Thought - Mohandas…
Bidyut Chakrabarty, Clayborne Carson
Hardcover
R3,845
Discovery Miles 38 450
Taking Small Classes One Step Further
Jeremy D. Finn, Margaret C. Wang
Hardcover
R2,563
Discovery Miles 25 630
|