Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
This volume presents a pedagogical review of the functional distribution of anomalous and nonergodic diffusion and its numerical simulations, starting from the studied stochastic processes to the deterministic partial differential equations governing the probability density function of the functionals. Since the remarkable theory of Brownian motion was proposed by Einstein in 1905, it had a sustained and broad impact on diverse fields, such as physics, chemistry, biology, economics, and mathematics. The functionals of Brownian motion are later widely attractive for their extensive applications. It was Kac, who firstly realized the statistical properties of these functionals can be studied by using Feynman's path integrals.In recent decades, anomalous and nonergodic diffusions which are non-Brownian become topical issues, such as fractional Brownian motion, Levy process, Levy walk, among others. This volume examines the statistical properties of the non-Brownian functionals, derives the governing equations of their distributions, and shows some algorithms for solving these equations numerically.
This book investigates statistical observables for anomalous and nonergodic dynamics, focusing on the dynamical behaviors of particles modelled by non-Brownian stochastic processes in the complex real-world environment. Statistical observables are widely used for anomalous and nonergodic stochastic systems, thus serving as a key to uncover their dynamics. This study explores the cutting edge of anomalous and nonergodic diffusion from the perspectives of mathematics, computer science, statistical and biological physics, and chemistry. With this interdisciplinary approach, multiple physical applications and mathematical issues are discussed, including stochastic and deterministic modelling, analyses of (stochastic) partial differential equations (PDEs), scientific computations and stochastic analyses, etc. Through regularity analysis, numerical scheme design and numerical experiments, the book also derives the governing equations for the probability density function of statistical observables, linking stochastic processes with PDEs. The book will appeal to both researchers of electrical engineering expert in the niche area of statistical observables and stochastic systems and scientists in a broad range of fields interested in anomalous diffusion, especially applied mathematicians and statistical physicists.
|
You may like...
|