Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book is a state of the art treatise on what has been done so far on measuring sustainability for decision making. Contributions will appeal to engineers and scientists engaged in technology development, assessment, and verification. Researchers working on engineering sustainability are likely to get ideas for further research in quantifying sustainability for industrial systems. Concepts described can be applied across all scales, from process technology to global sustainability; and challenges and limitations are also addressed. Readers will discover important insights about simulation-based approaches to process design and quantitative measurement techniques of sustainability for business and technology systems. Most of the examples and case studies are from chemical enterprises but the methodologies presented could be applicable to any system for which quantitative data for indicators are available, and the choice of the set of indicators of sustainability are comprehensive.
Chemicals from Biomass: Integrating Bioprocesses into Chemical Production Complexes for Sustainable Development helps engineers optimize the development of new chemical and polymer plants that use renewable resources to replace the output of goods and services from existing plants. It also discusses the conversion of those existing plants into facilities that are based on renewable resources that may require nonrenewable resource supplements. Relying on extensive reviews of biomass as feedstock and the production of chemicals from biomass, this book identifies and illustrates the design of new chemical processes (bioprocesses) that use renewable feedstock (biomass) as raw materials. The authors show how these new bioprocesses can be integrated into the existing plant in a chemical production complex to obtain the best combination of energy-efficient and environmentally acceptable facilities. This presented methodology is an essential component of sustainable development, and these steps are essential to achieving a sustainable chemical industry. The authors evaluate potential bioprocesses based on a conceptual design of biomass-based chemical production, and they use Aspen HYSYS (R) and Aspen ICARUS (R) to perform simulations and economic evaluations of these processes. The book outlines detailed process designs created for seven bioprocesses that use biomass and carbon dioxide as feedstock to produce a range of chemicals and monomers. These include fermentation, transesterification, anaerobic digestion, gasification, and algae oil production. These process designs, and associated simulation codes, can be downloaded for modification, as needed. The methodology presented in this book can be used to evaluate energy efficiency, cost, sustainability, and environmental acceptability of plants and new products. Based on the results of that analysis, the methodology can be applied to other chemical complexes for new bioprocesses, reduced emissions, and energy savings.
Chemicals from Biomass: Integrating Bioprocesses into Chemical Production Complexes for Sustainable Development helps engineers optimize the development of new chemical and polymer plants that use renewable resources to replace the output of goods and services from existing plants. It also discusses the conversion of those existing plants into facilities that are based on renewable resources that may require nonrenewable resource supplements. Relying on extensive reviews of biomass as feedstock and the production of chemicals from biomass, this book identifies and illustrates the design of new chemical processes (bioprocesses) that use renewable feedstock (biomass) as raw materials. The authors show how these new bioprocesses can be integrated into the existing plant in a chemical production complex to obtain the best combination of energy-efficient and environmentally acceptable facilities. This presented methodology is an essential component of sustainable development, and these steps are essential to achieving a sustainable chemical industry. The authors evaluate potential bioprocesses based on a conceptual design of biomass-based chemical production, and they use Aspen HYSYS(r) and Aspen ICARUS(r) to perform simulations and economic evaluations of these processes. The book outlines detailed process designs created for seven bioprocesses that use biomass and carbon dioxide as feedstock to produce a range of chemicals and monomers. These include fermentation, transesterification, anaerobic digestion, gasification, and algae oil production. These process designs, and associated simulation codes, can be downloaded for modification, as needed. The methodology presented in this book can be used to evaluate energy efficiency, cost, sustainability, and environmental acceptability of plants and new products. Based on the results of that analysis, the methodology can be applied to other chemical complexes for new bioprocesses, reduced emissions, and energy savings.
This book is a state of the art treatise on what has been done so far on measuring sustainability for decision making. Contributions will appeal to engineers and scientists engaged in technology development, assessment, and verification. Researchers working on engineering sustainability are likely to get ideas for further research in quantifying sustainability for industrial systems. Concepts described can be applied across all scales, from process technology to global sustainability; and challenges and limitations are also addressed. Readers will discover important insights about simulation-based approaches to process design and quantitative measurement techniques of sustainability for business and technology systems. Most of the examples and case studies are from chemical enterprises but the methodologies presented could be applicable to any system for which quantitative data for indicators are available, and the choice of the set of indicators of sustainability are comprehensive.
|
You may like...
The White Queen - The Complete Series
Rebecca Ferguson, Amanda Hale, …
Blu-ray disc
(4)
|