0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Dimensionality Reduction in Data Science (Hardcover, 1st ed. 2022): Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar,... Dimensionality Reduction in Data Science (Hardcover, 1st ed. 2022)
Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar, Kalidas Jana, …
R1,916 Discovery Miles 19 160 Ships in 10 - 15 working days

This book provides a practical and fairly comprehensive review of Data Science through the lens of dimensionality reduction, as well as hands-on techniques to tackle problems with data collected in the real world. State-of-the-art results and solutions from statistics, computer science and mathematics are explained from the point of view of a practitioner in any domain science, such as biology, cyber security, chemistry, sports science and many others. Quantitative and qualitative assessment methods are described to implement and validate the solutions back in the real world where the problems originated. The ability to generate, gather and store volumes of data in the order of tera- and exo bytes daily has far outpaced our ability to derive useful information with available computational resources for many domains. This book focuses on data science and problem definition, data cleansing, feature selection and extraction, statistical, geometric, information-theoretic, biomolecular and machine learning methods for dimensionality reduction of big datasets and problem solving, as well as a comparative assessment of solutions in a real-world setting. This book targets professionals working within related fields with an undergraduate degree in any science area, particularly quantitative. Readers should be able to follow examples in this book that introduce each method or technique. These motivating examples are followed by precise definitions of the technical concepts required and presentation of the results in general situations. These concepts require a degree of abstraction that can be followed by re-interpreting concepts like in the original example(s). Finally, each section closes with solutions to the original problem(s) afforded by these techniques, perhaps in various ways to compare and contrast dis/advantages to other solutions.

Dimensionality Reduction in Data Science (1st ed. 2022): Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar, Kalidas... Dimensionality Reduction in Data Science (1st ed. 2022)
Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar, Kalidas Jana, …
R1,764 Discovery Miles 17 640 Ships in 10 - 15 working days

This book provides a practical and fairly comprehensive review of Data Science through the lens of dimensionality reduction, as well as hands-on techniques to tackle problems with data collected in the real world. State-of-the-art results and solutions from statistics, computer science and mathematics are explained from the point of view of a practitioner in any domain science, such as biology, cyber security, chemistry, sports science and many others. Quantitative and qualitative assessment methods are described to implement and validate the solutions back in the real world where the problems originated. The ability to generate, gather and store volumes of data in the order of tera- and exo bytes daily has far outpaced our ability to derive useful information with available computational resources for many domains. This book focuses on data science and problem definition, data cleansing, feature selection and extraction, statistical, geometric, information-theoretic, biomolecular and machine learning methods for dimensionality reduction of big datasets and problem solving, as well as a comparative assessment of solutions in a real-world setting. This book targets professionals working within related fields with an undergraduate degree in any science area, particularly quantitative. Readers should be able to follow examples in this book that introduce each method or technique. These motivating examples are followed by precise definitions of the technical concepts required and presentation of the results in general situations. These concepts require a degree of abstraction that can be followed by re-interpreting concepts like in the original example(s). Finally, each section closes with solutions to the original problem(s) afforded by these techniques, perhaps in various ways to compare and contrast dis/advantages to other solutions.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu Paperback R1,286 R1,202 Discovery Miles 12 020
Never - The Autobiography
Rick Astley Paperback R399 R362 Discovery Miles 3 620
Question a Day Journal - 365 Days to…
Jaclyn Musselman Hardcover R628 R582 Discovery Miles 5 820
The Westminster Assembly's Shorter…
Ebenezer Erskine Paperback R677 Discovery Miles 6 770
Stellenbosch: Murder Town - Two Decades…
Julian Jansen Paperback R360 R337 Discovery Miles 3 370
Dictionary Of Devotions
Michael J Walsh Hardcover R1,171 Discovery Miles 11 710
Bullsh!t - 50 Fibs That Made South…
Jonathan Ancer Paperback  (2)
R280 R250 Discovery Miles 2 500
The Bahia Blanca Estuary - Ecology and…
Sandra M. Fiori, Paula D Pratolongo Hardcover R4,711 Discovery Miles 47 110
Small Things
Nthikeng Mohlele Paperback  (1)
R404 Discovery Miles 4 040
Plant Defense Mechanisms
Josphert Ngui Kimatu Hardcover R3,366 Discovery Miles 33 660

 

Partners