0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Dimensionality Reduction in Data Science (Hardcover, 1st ed. 2022): Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar,... Dimensionality Reduction in Data Science (Hardcover, 1st ed. 2022)
Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar, Kalidas Jana, …
R1,855 Discovery Miles 18 550 Ships in 10 - 15 working days

This book provides a practical and fairly comprehensive review of Data Science through the lens of dimensionality reduction, as well as hands-on techniques to tackle problems with data collected in the real world. State-of-the-art results and solutions from statistics, computer science and mathematics are explained from the point of view of a practitioner in any domain science, such as biology, cyber security, chemistry, sports science and many others. Quantitative and qualitative assessment methods are described to implement and validate the solutions back in the real world where the problems originated. The ability to generate, gather and store volumes of data in the order of tera- and exo bytes daily has far outpaced our ability to derive useful information with available computational resources for many domains. This book focuses on data science and problem definition, data cleansing, feature selection and extraction, statistical, geometric, information-theoretic, biomolecular and machine learning methods for dimensionality reduction of big datasets and problem solving, as well as a comparative assessment of solutions in a real-world setting. This book targets professionals working within related fields with an undergraduate degree in any science area, particularly quantitative. Readers should be able to follow examples in this book that introduce each method or technique. These motivating examples are followed by precise definitions of the technical concepts required and presentation of the results in general situations. These concepts require a degree of abstraction that can be followed by re-interpreting concepts like in the original example(s). Finally, each section closes with solutions to the original problem(s) afforded by these techniques, perhaps in various ways to compare and contrast dis/advantages to other solutions.

Dimensionality Reduction in Data Science (1st ed. 2022): Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar, Kalidas... Dimensionality Reduction in Data Science (1st ed. 2022)
Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar, Kalidas Jana, …
R1,705 Discovery Miles 17 050 Ships in 10 - 15 working days

This book provides a practical and fairly comprehensive review of Data Science through the lens of dimensionality reduction, as well as hands-on techniques to tackle problems with data collected in the real world. State-of-the-art results and solutions from statistics, computer science and mathematics are explained from the point of view of a practitioner in any domain science, such as biology, cyber security, chemistry, sports science and many others. Quantitative and qualitative assessment methods are described to implement and validate the solutions back in the real world where the problems originated. The ability to generate, gather and store volumes of data in the order of tera- and exo bytes daily has far outpaced our ability to derive useful information with available computational resources for many domains. This book focuses on data science and problem definition, data cleansing, feature selection and extraction, statistical, geometric, information-theoretic, biomolecular and machine learning methods for dimensionality reduction of big datasets and problem solving, as well as a comparative assessment of solutions in a real-world setting. This book targets professionals working within related fields with an undergraduate degree in any science area, particularly quantitative. Readers should be able to follow examples in this book that introduce each method or technique. These motivating examples are followed by precise definitions of the technical concepts required and presentation of the results in general situations. These concepts require a degree of abstraction that can be followed by re-interpreting concepts like in the original example(s). Finally, each section closes with solutions to the original problem(s) afforded by these techniques, perhaps in various ways to compare and contrast dis/advantages to other solutions.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
A Court Of Thorns And Roses: 5-Book…
Sarah J. Maas Paperback R1,250 R968 Discovery Miles 9 680
Cable Guys Controller and Smartphone…
R399 R359 Discovery Miles 3 590
Amos Clear Glue All Purpose Glue (30ml)
R29 Discovery Miles 290
Emily Henry 3-Book Collection - Book…
Emily Henry Paperback R500 R428 Discovery Miles 4 280
Loot
Nadine Gordimer Paperback  (2)
R205 R164 Discovery Miles 1 640
Sterile Wound Dressing
R5 Discovery Miles 50
Dr. Brown's Advantage Pacifier - Stage 1…
R211 R89 Discovery Miles 890
Dog Man: The Scarlet Shedder
Dav Pilkey Hardcover R420 R328 Discovery Miles 3 280
Cadac 47cm Paella Pan
R1,215 Discovery Miles 12 150
Aerolatte Cappuccino Art Stencils (Set…
R110 R95 Discovery Miles 950

 

Partners