Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 14 of 14 matches in All Departments
This book covers graphene reinforced polymers, which are useful in electronic applications, including electrically conductive thermoplastics composites, thermosets and elastomers. It systematically introduces the reader to fundamental aspects and leads over to actual applications, such as sensor fabrication, electromagnetic interference shielding, optoelectronics, superconductivity, or memory chips. The book also describes dielectric and thermal behaviour of graphene polymer composites - properties which are essential to consider for the fabrication and production of these new electronic materials. The contributions in this book critically discuss the actual questions in the development and applications of graphene polymer composites. It will thus appeal to chemists, physicists, materials scientists as well as nano technologists, who are interested in the properties of graphene polymer composites.
This book is the first comprehensive collection of electronic aspects of different kinds of elastomer composites, including combinations of synthetic, natural and thermoplastic elastomers with different conducting fillers like metal nanoparticles, carbon nanotubes, or graphenes, and many more. It covers elastomer composites, which are useful in electronic applications, including chemical and physical as well as material science aspects. The presented elastomer composites have great potential for solving emerging new material application requirements, for example as flexible and wearable electronics. The book is structured and organized by the rubber/elastomer type: each chapter describes a different elastomer matrix and its composites. While introducing to important fundamentals, it is application-oriented, discussing the current issues and challenges in the field of elastomer composites. This book will thus appeal to researchers and scientists, to engineers and technologists, but also to graduate students, working on elastomer composites, or on electronics engineering with the composites, providing the readers with a sound introduction to the field and solutions to both fundamental and applied problems.
This book presents a thorough discussion of the physics, biology, chemistry and medicinal science behind a new and important area of materials science and engineering: polymer nanocomposites. The tremendous opportunities of polymer nanocomposites in the biomedical field arise from their multitude of applications and their ability to satisfy the vastly different functional requirements for each of these applications. In the biomedical field, a polymer nanocomposite system must meet certain design and functional criteria, including biocompatibility, biodegradability, mechanical properties, and, in some cases, aesthetic demands. The content of this book builds on what has been learnt in elementary courses about synthesising polymers, different nanoparticles, polymer composites, biomedical requirements, uses of polymer nanocomposites in medicine as well as medical devices and the major mechanisms involved during each application. The impact of hybrid nanofillers and synergistic composite mixtures which are used extensively or show promising outcomes in the biomedical field are also discussed. These novel materials vary from inorganic/ceramic-reinforced nanocomposites for mechanical property improvement to peptide-based nanomaterials, with the chemistry designed to render the entire material biocompatible.
This book covers smart polymer nanocomposites with perspectives for application in energy harvesting, as self-healing materials, or shape memory materials. The book is application-oriented and describes different types of polymer nanocomposites, such as elastomeric composites, thermoplastic composites, or conductive polymer composites. It outlines their potential for applications, which would meet some of the most important challenges nowadays: for harvesting energy, as materials with the capacity to self-heal, or as materials memorizing a given shape.The book brings together these different applications for the first time in one single platform. Chapters are ordered both by the type of composites and by the target applications. Readers will thus find a good overview, facilitating a comparison of the different smart materials and their applications. The book will appeal to scientists in the fields of chemistry, material science and engineering, but also to technologists and physicists, from graduate student level to researcher and professional.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
This book deals with the polymers, different methods of synthesis, and synthesis of composites, as well as the different techniques used for polymer characterization. Most of the world's industries extract the anomalous properties of polymers to make excellent cost-effective materials. Because of this, the types of polymers, their processing, and the analysis of their various properties are very significant. Readers will gain a thorough knowledge about the processing of different types of polymers and composites made from them, as well as their various applications. Suitable for classroom use but especially important for researchers, this book addresses: Adhesion of amorphous polymers with vitrified bulk and surface glass transition Functionalized biopolymers and their applications A new synthesis of p-Cresol-Adipamide-Formaldehyde copolymer resin and its applications as an ion-changer Correlating performance of commercial viscosity modifiers for formulating shear stable industrial lubricants Synthesis of phthalonitrile polymers in ionic liquid and microwave media Studies on nanocomposite polymer electrolytes doped with Ca3(PO4)2 for lithium batteries
This book covers smart polymer nanocomposites with perspectives for application in energy harvesting, as self-healing materials, or shape memory materials. The book is application-oriented and describes different types of polymer nanocomposites, such as elastomeric composites, thermoplastic composites, or conductive polymer composites. It outlines their potential for applications, which would meet some of the most important challenges nowadays: for harvesting energy, as materials with the capacity to self-heal, or as materials memorizing a given shape.The book brings together these different applications for the first time in one single platform. Chapters are ordered both by the type of composites and by the target applications. Readers will thus find a good overview, facilitating a comparison of the different smart materials and their applications. The book will appeal to scientists in the fields of chemistry, material science and engineering, but also to technologists and physicists, from graduate student level to researcher and professional.
This book covers graphene reinforced polymers, which are useful in electronic applications, including electrically conductive thermoplastics composites, thermosets and elastomers. It systematically introduces the reader to fundamental aspects and leads over to actual applications, such as sensor fabrication, electromagnetic interference shielding, optoelectronics, superconductivity, or memory chips. The book also describes dielectric and thermal behaviour of graphene polymer composites - properties which are essential to consider for the fabrication and production of these new electronic materials. The contributions in this book critically discuss the actual questions in the development and applications of graphene polymer composites. It will thus appeal to chemists, physicists, materials scientists as well as nano technologists, who are interested in the properties of graphene polymer composites.
This book is the first comprehensive collection of electronic aspects of different kinds of elastomer composites, including combinations of synthetic, natural and thermoplastic elastomers with different conducting fillers like metal nanoparticles, carbon nanotubes, or graphenes, and many more. It covers elastomer composites, which are useful in electronic applications, including chemical and physical as well as material science aspects. The presented elastomer composites have great potential for solving emerging new material application requirements, for example as flexible and wearable electronics. The book is structured and organized by the rubber/elastomer type: each chapter describes a different elastomer matrix and its composites. While introducing to important fundamentals, it is application-oriented, discussing the current issues and challenges in the field of elastomer composites. This book will thus appeal to researchers and scientists, to engineers and technologists, but also to graduate students, working on elastomer composites, or on electronics engineering with the composites, providing the readers with a sound introduction to the field and solutions to both fundamental and applied problems.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
This book deals with the polymers, different methods of synthesis, synthesis of composites of composites as well as the different techniques used for polymer characterization. Most of the industries of the world extract the anomalous properties of polymers to make excellent and cost-effective materials. Because of this, the types of polymers, their processing, and the analysis of their various properties are very significant. Readers will gain a thorough knowledge about the processing of different types of polymers and composites made from them as well as their various applications. This book is suitable for classroom use but is especially important for researchers. The book addresses these topics: adhesion of amorphous polymers with vitrified bulk and surface glass transition; functionalized biopolymers and their applications; a new synthesis of p-Crestol-Adipamide-Formaldehyde copolymer resin and its applications as an ion-changer; correlating performance of commercial viscosity modifiers for formulating shear stable industrial lubricants; synthesis of phthalonitrile polymers in ionic liquid and microwave media; and, studies on nanocomposite polymer electrolytes doped with Ca3(PO4)2 for lithium batteries.
Biopolymer Composites in Electronics examines the current state-of-the-art in the electronic application based on biopolymer composites. Covering the synthesis, dispersion of fillers, characterization and fabrication of the composite materials, the book will help materials scientists and engineers address the challenges posed by the increased use of biopolymeric materials in electronic applications. The influence of preparation techniques on the generation of micro, meso, and nanoscale fillers, and the effect of filler size and dispersion on various biopolymers are discussed in detail. Applications covered include sensors, actuators, optics, fuel cells, photovoltaics, dielectrics, electromagnetic shielding, piezoelectrics, flexible displays, and microwave absorbers. In addition, characterization techniques are discussed and compared, enabling scientists and engineers to make the correct choice of technique. This book is a 'one-stop' reference for researchers, covering the entire state-of-the-art in biopolymer electronics. Written by a collection of expert worldwide contributors from industry, academia, government, and private research institutions, it is an outstanding reference for researchers in the field of biopolymer composites for advanced technologies.
Spectroscopy of Polymer Nanocomposites covers all aspects of the spectroscopic characterization of polymer nanocomposites. More than 25 spectroscopy characterization techniques - almost all used in materials science - are treated in the book, with discussion of their potentialities and limitations. By comparing the techniques with each other and presenting the techniques together with their specific application areas, the book provides scientists and engineers the information needed for solving specific problems and choosing the right technique for analyzing the material structure. From this, the dispersion structure of fillers, property relations and filler-polymer interactions can be determined, and, ultimately, the right materials can be chosen for the right applications. Besides the techniques and structure-property relations, aspects covered include: phase segregation of filler particles, filler agglomeration and deagglomeration, filler dispersion, filler-polymer interactions, surfaces and interfaces. The book also examines recent developments, as well as unresolved issues and new challenges, in the characterization of surfaces and interfaces in polymer nanocomposites. This handpicked selection of topics, and the combined expertise of contributors from industry, academia, government and private research organizations across the globe, make this survey an outstanding reference source for anyone involved in the field of polymer nanocomposites in academia or industry.
Polymer Science and Innovative Applications: Materials, Techniques, and Future Developments introduces the science of innovative polymers and composites, their analysis via experimental techniques and simulation, and their utilization in a variety of application areas. This approach helps to unlock the potential of new materials for product design and other uses. The book also examines the role that these applications play in the human world, from pollution and health impacts, to their potential to make a positive contribution in areas including environmental remediation, medicine and healthcare, and renewable energy. Advantages, disadvantages, possibilities, and challenges relating to the utilization of polymers in human society are included.
|
You may like...
A Shakespeare Story: Shakespeare Stories…
Andrew Matthews
Paperback
|