Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 26 matches in All Departments
Fuzzy logic methodology has been proven effective in dealing with complex nonlinear systems containing uncertainties that are otherwise difficult to model. Technology based on this methodology has been applied to many real-world problems, especially in the area of consumer products. This book presents the first unified and thorough treatment of fuzzy modeling and fuzzy control, providing necessary tools for the control of complex nonlinear systems. Careful consideration is given to questions concerning model complexity, model precision, and computing time. In addition to being an excellent reference for electrical, computer, chemical, industrial, civil, manufacturing, mechanical and aeronautical engineers, the book may also be appropriate for classroom use in a graduate course in electrical engineering, computer engineering, and computer science. Applied mathematicians, control engineers, computer scientists, and physicists will benefit from the presentation as well.
There are many methods of stable controller design for nonlinear
systems. In seeking to go beyond the minimum requirement of
stability, Adaptive Dynamic Programming in Discrete Time approaches
the challenging topic of optimal control for nonlinear systems
using the tools of adaptive dynamic programming (ADP). The range of
systems treated is extensive; affine, switched, singularly
perturbed and time-delay nonlinear systems are discussed as are the
uses of neural networks and techniques of value and policy
iteration. The text features three main aspects of ADP in which the
methods proposed for stabilization and for tracking and games
benefit from the incorporation of optimal control methods:
It is with great pleasure that I offer my reflections on Professor Anthony N. Michel's retirement from the University of Notre Dame. I have known Tony since 1984 when he joined the University of Notre Dame's faculty as Chair of the Depart ment of Electrical Engineering. Tony has had a long and outstanding career. As a researcher, he has made im portant contributions in several areas of systems theory and control theory, espe cially stability analysis of large-scale dynamical systems. The numerous awards he received from the professional societies, particularly the Institute of Electrical and Electronics Engineers (IEEE), are a testament to his accomplishments in research. He received the IEEE Control Systems Society's Best Transactions Paper Award (1978), and the IEEE Circuits and Systems Society's Guillemin-Cauer Prize Paper Award (1984) and Myril B. Reed Outstanding Paper Award (1993), among others. In addition, he was a Fulbright Scholar (1992) and received the Alexander von Hum boldt Forschungspreis (Alexander von Humboldt Research Award for Senior U.S. Scientists) from the German government (1997). To date, he has written eight books and published over 150 archival journal papers. Tony is also an effective administrator who inspires high academic standards."
Controlling Chaos achieves three goals: the suppression, synchronisation and generation of chaos, each of which is the focus of a separate part of the book. The text deals with the well-known Lorenz, Rossler and Henon attractors and the Chua circuit and with less celebrated novel systems. Modelling of chaos is accomplished using difference equations and ordinary and time-delayed differential equations. The methods directed at controlling chaos benefit from the influence of advanced nonlinear control theory: inverse optimal control is used for stabilization; exact linearization for synchronization; and impulsive control for chaotification. Notably, a fusion of chaos and fuzzy systems theories is employed. Time-delayed systems are also studied. The results presented are general for a broad class of chaotic systems. This monograph is self-contained with introductory material providing a review of the history of chaos control and the necessary mathematical preliminaries for working with dynamical systems."
Networked control systems (NCS) consist of sensors, actuators and controllers the operations of which may be distributed over geographically disparate locations and co-ordinated by the exchange of information passed over a communication network. The communication network may be physically wired or not. The widespread applications of the Internet have been a major driving force for research and development of NCS. NCS have advantages in terms of cost reduction, system diagnosis and flexibility, minimizing wiring and making the addition and replacement of individual elements relatively simple; efficient data sharing makes taking globally intelligent control decisions easier with an NCS. The applications of NCS are very wide, from the large scale of factory automation and plant monitoring to the smaller but complicated networks of computers in modern cars, places and autonomous robots. Networked Control Systems presents the most recent results in stability and robustness analysis as well as new developments related to networked fuzzy and optimal control. Many of the chapters contain details of case-studies, experimental, simulation and/or other application-related work showing how the theories put forward can be implemented in real systems. The state-of-the art research reported in this volume by an international team of contributors will make Networked Control Systems an essential reference for researchers and postgraduate students in control, electrical, computer and mechanical engineering and computer science.
The current research and development in intelligent control and information processing have been driven increasingly by advancements made from fields outside the traditional control areas, into new frontiers of intelligent control and information processing so as to deal with ever more complex systems with ever growing size of data and complexity.As researches in intelligent control and information processing are taking on ever more complex problems, the control system as a nuclear to coordinate the activity within a system increasingly need to be equipped with the capability to analyze, and reason so as to make decision. This requires the support of cognitive components, and communication protocol to synchronize events within the system to operate in unison.In this review volume, we invited several well-known experts and active researchers from adaptive/approximate dynamic programming, reinforcement learning, machine learning, neural optimal control, networked systems, and cyber-physical systems, online concept drift detection, pattern recognition, to contribute their most recent achievements into the development of intelligent control systems, to share with the readers, how these inclusions helps to enhance the cognitive capability of future control systems in handling complex problems.This review volume encapsulates the state-of-art pioneering works in the development of intelligent control systems. Proposition and evocations of each solution is backed up with evidences from applications, could be used as references for the consideration of decision support and communication components required for today intelligent control systems.
There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming in Discrete Time approaches the challenging topic of optimal control for nonlinear systems using the tools of adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: * infinite-horizon control for which the difficulty of solving partial differential Hamilton-Jacobi-Bellman equations directly is overcome, and proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; * finite-horizon control, implemented in discrete-time nonlinear systems showing the reader how to obtain suboptimal control solutions within a fixed number of control steps and with results more easily applied in real systems than those usually gained from infinite-horizon control; * nonlinear games for which a pair of mixed optimal policies are derived for solving games both when the saddle point does not exist, and, when it does, avoiding the existence conditions of the saddle point. Non-zero-sum games are studied in the context of a single network scheme in which policies are obtained guaranteeing system stability and minimizing the individual performance function yielding a Nash equilibrium. In order to make the coverage suitable for the student as well as for the expert reader, Adaptive Dynamic Programming in Discrete Time: * establishes the fundamental theory involved clearly with each chapter devoted to a clearly identifiable control paradigm; * demonstrates convergence proofs of the ADP algorithms to deepen understanding of the derivation of stability and convergence with the iterative computational methods used; and * shows how ADP methods can be put to use both in simulation and in real applications. This text will be of considerable interest to researchers interested in optimal control and its applications in operations research, applied mathematics computational intelligence and engineering. Graduate students working in control and operations research will also find the ideas presented here to be a source of powerful methods for furthering their study.
This book constitutes the refereed proceedings of the 6th International Conference on Brain Inspired Cognitive Systems, BICS 2013, held in Beijing, China in June 2013. The 45 high-quality papers presented were carefully reviewed and selected from 68 submissions. BICS 2013 aims to provide a high-level international forum for scientists, engineers, and educators to present the state of the art of brain inspired cognitive systems research and applications in diverse fields.
It is with great pleasure that I offer my reflections on Professor Anthony N. Michel's retirement from the University of Notre Dame. I have known Tony since 1984 when he joined the University of Notre Dame's faculty as Chair of the Depart ment of Electrical Engineering. Tony has had a long and outstanding career. As a researcher, he has made im portant contributions in several areas of systems theory and control theory, espe cially stability analysis of large-scale dynamical systems. The numerous awards he received from the professional societies, particularly the Institute of Electrical and Electronics Engineers (IEEE), are a testament to his accomplishments in research. He received the IEEE Control Systems Society's Best Transactions Paper Award (1978), and the IEEE Circuits and Systems Society's Guillemin-Cauer Prize Paper Award (1984) and Myril B. Reed Outstanding Paper Award (1993), among others. In addition, he was a Fulbright Scholar (1992) and received the Alexander von Hum boldt Forschungspreis (Alexander von Humboldt Research Award for Senior U.S. Scientists) from the German government (1997). To date, he has written eight books and published over 150 archival journal papers. Tony is also an effective administrator who inspires high academic standards.
This book constitutes the refereed proceedings of the 5th International Conference on Brain Inspired Cognitive Systems, BICS 2012, held in Shenyang, Liaoning, China in July 2012. The 46 high-quality papers presented were carefully reviewed and selected from 116 submissions. The papers are organized in topical sections on biologically inspired systems, cognitive neuroscience, models of consciousness, and neural computation.
Controlling Chaos achieves three goals: the suppression, synchronisation and generation of chaos, each of which is the focus of a separate part of the book. The text deals with the well-known Lorenz, Roessler and Henon attractors and the Chua circuit and with less celebrated novel systems. Modelling of chaos is accomplished using difference equations and ordinary and time-delayed differential equations. The methods directed at controlling chaos benefit from the influence of advanced nonlinear control theory: inverse optimal control is used for stabilization; exact linearization for synchronization; and impulsive control for chaotification. Notably, a fusion of chaos and fuzzy systems theories is employed. Time-delayed systems are also studied. The results presented are general for a broad class of chaotic systems. This monograph is self-contained with introductory material providing a review of the history of chaos control and the necessary mathematical preliminaries for working with dynamical systems.
The three-volume set LNCS 6675, 6676 and 6677 constitutes the refereed proceedings of the 8th International Symposium on Neural Networks, ISNN 2011, held in Guilin, China, in May/June 2011. The total of 215 papers presented in all three volumes were carefully reviewed and selected from 651 submissions. The contributions are structured in topical sections on computational neuroscience and cognitive science; neurodynamics and complex systems; stability and convergence analysis; neural network models; supervised learning and unsupervised learning; kernel methods and support vector machines; mixture models and clustering; visual perception and pattern recognition; motion, tracking and object recognition; natural scene analysis and speech recognition; neuromorphic hardware, fuzzy neural networks and robotics; multi-agent systems and adaptive dynamic programming; reinforcement learning and decision making; action and motor control; adaptive and hybrid intelligent systems; neuroinformatics and bioinformatics; information retrieval; data mining and knowledge discovery; and natural language processing.
The three-volume set LNCS 6675, 6676 and 6677 constitutes the refereed proceedings of the 8th International Symposium on Neural Networks, ISNN 2011, held in Guilin, China, in May/June 2011. The total of 215 papers presented in all three volumes were carefully reviewed and selected from 651 submissions. The contributions are structured in topical sections on computational neuroscience and cognitive science; neurodynamics and complex systems; stability and convergence analysis; neural network models; supervised learning and unsupervised learning; kernel methods and support vector machines; mixture models and clustering; visual perception and pattern recognition; motion, tracking and object recognition; natural scene analysis and speech recognition; neuromorphic hardware, fuzzy neural networks and robotics; multi-agent systems and adaptive dynamic programming; reinforcement learning and decision making; action and motor control; adaptive and hybrid intelligent systems; neuroinformatics and bioinformatics; information retrieval; data mining and knowledge discovery; and natural language processing.
The three-volume set LNCS 6675, 6676 and 6677 constitutes the refereed proceedings of the 8th International Symposium on Neural Networks, ISNN 2011, held in Guilin, China, in May/June 2011. The total of 215 papers presented in all three volumes were carefully reviewed and selected from 651 submissions. The contributions are structured in topical sections on computational neuroscience and cognitive science; neurodynamics and complex systems; stability and convergence analysis; neural network models; supervised learning and unsupervised learning; kernel methods and support vector machines; mixture models and clustering; visual perception and pattern recognition; motion, tracking and object recognition; natural scene analysis and speech recognition; neuromorphic hardware, fuzzy neural networks and robotics; multi-agent systems and adaptive dynamic programming; reinforcement learning and decision making; action and motor control; adaptive and hybrid intelligent systems; neuroinformatics and bioinformatics; information retrieval; data mining and knowledge discovery; and natural language processing.
Networked control systems (NCS) confer advantages of cost reduction, system diagnosis and flexibility, minimizing wiring and simplifying the addition and replacement of individual elements; efficient data sharing makes taking globally intelligent control decisions easier with NCS. The applications of NCS range from the large scale of factory automation and plant monitoring to the smaller networks of computers in modern cars, places and autonomous robots. Networked Control Systems presents recent results in stability and robustness analysis and new developments related to networked fuzzy and optimal control. Many chapters contain case-studies, experimental, simulation or other application-related work showing how the theories put forward can be implemented. The state-of-the art research reported in this volume by an international team of contributors makes it an essential reference for researchers and postgraduate students in control, electrical, computer and mechanical engineering and computer science.
This three-part monograph addresses topics in the areas of control systems, signal processing and neural networks. Procedures and results are determined which constitute the first successful synthesis procedure for associative memories by means of artificial neural networks with arbitrarily pre-specified full or partial interconnecting structure and with or without symmetry constraints for the connection matrix.
The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constitues the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on Machine Learning, Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing.
The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constitues the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on Machine Learning, Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing.
The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constitues the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on Machine Learning, Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing.
The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constitues the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on Machine Learning, Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing.
The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constituts the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on Machine Learning, Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing.
The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constitues the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on Machine Learning, Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing.
The four volume set LNCS 9947, LNCS 9948, LNCS 9949, and LNCS 9950 constitues the proceedings of the 23rd International Conference on Neural Information Processing, ICONIP 2016, held in Kyoto, Japan, in October 2016. The 296 full papers presented were carefully reviewed and selected from 431 submissions. The 4 volumes are organized in topical sections on deep and reinforcement learning; big data analysis; neural data analysis; robotics and control; bio-inspired/energy efficient information processing; whole brain architecture; neurodynamics; bioinformatics; biomedical engineering; data mining and cybersecurity workshop; machine learning; neuromorphic hardware; sensory perception; pattern recognition; social networks; brain-machine interface; computer vision; time series analysis; data-driven approach for extracting latent features; topological and graph based clustering methods; computational intelligence; data mining; deep neural networks; computational and cognitive neurosciences; theory and algorithms.
The four volume set LNCS 9947, LNCS 9948, LNCS 9949, and LNCS 9950 constitues the proceedings of the 23rd International Conference on Neural Information Processing, ICONIP 2016, held in Kyoto, Japan, in October 2016. The 296 full papers presented were carefully reviewed and selected from 431 submissions. The 4 volumes are organized in topical sections on deep and reinforcement learning; big data analysis; neural data analysis; robotics and control; bio-inspired/energy efficient information processing; whole brain architecture; neurodynamics; bioinformatics; biomedical engineering; data mining and cybersecurity workshop; machine learning; neuromorphic hardware; sensory perception; pattern recognition; social networks; brain-machine interface; computer vision; time series analysis; data-driven approach for extracting latent features; topological and graph based clustering methods; computational intelligence; data mining; deep neural networks; computational and cognitive neurosciences; theory and algorithms.
The four volume set LNCS 9947, LNCS 9948, LNCS 9949, and LNCS 9950 constitutes the proceedings of the 23rd International Conference on Neural Information Processing, ICONIP 2016, held in Kyoto, Japan, in October 2016. The 296 full papers presented were carefully reviewed and selected from 431 submissions. The 4 volumes are organized in topical sections on deep and reinforcement learning; big data analysis; neural data analysis; robotics and control; bio-inspired/energy efficient information processing; whole brain architecture; neurodynamics; bioinformatics; biomedical engineering; data mining and cybersecurity workshop; machine learning; neuromorphic hardware; sensory perception; pattern recognition; social networks; brain-machine interface; computer vision; time series analysis; data-driven approach for extracting latent features; topological and graph based clustering methods; computational intelligence; data mining; deep neural networks; computational and cognitive neurosciences; theory and algorithms. |
You may like...
|