0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Demystifying Big Data and Machine Learning for Healthcare (Paperback): Prashant Natarajan, John C. Frenzel, Detlev H. Smaltz Demystifying Big Data and Machine Learning for Healthcare (Paperback)
Prashant Natarajan, John C. Frenzel, Detlev H. Smaltz
R1,070 Discovery Miles 10 700 Ships in 12 - 17 working days

Healthcare transformation requires us to continually look at new and better ways to manage insights - both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization's day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V's that matter in healthcare and why Harmonize the 4 C's across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.

Demystifying Big Data and Machine Learning for Healthcare (Hardcover): Prashant Natarajan, John C. Frenzel, Detlev H. Smaltz Demystifying Big Data and Machine Learning for Healthcare (Hardcover)
Prashant Natarajan, John C. Frenzel, Detlev H. Smaltz
R2,314 Discovery Miles 23 140 Ships in 12 - 17 working days

Healthcare transformation requires us to continually look at new and better ways to manage insights - both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization's day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V's that matter in healthcare and why Harmonize the 4 C's across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Cartier Declaration Eau De Parfum Spray…
R3,452 Discovery Miles 34 520
Microsoft Xbox Series X Console (1TB)
 (21)
R14,999 Discovery Miles 149 990
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe Paperback R260 R189 Discovery Miles 1 890
Parker Jotter Duo S. Steel Ballpoint Pen…
 (5)
R599 R523 Discovery Miles 5 230
The Car
Arctic Monkeys CD R374 Discovery Miles 3 740
Bible Journaling Stickers (3 Sheets)
Stickers R30 R25 Discovery Miles 250
Avengers: 4-Movie Collection - The…
Robert Downey Jr., Chris Evans, … Blu-ray disc R589 Discovery Miles 5 890
Loot
Nadine Gordimer Paperback  (2)
R205 R164 Discovery Miles 1 640
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn Paperback  (5)
R199 R164 Discovery Miles 1 640
LG 20MK400H 19.5" WXGA LED Monitor…
R2,199 R1,699 Discovery Miles 16 990

 

Partners