Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This book presents a thorough review of the state-of-knowledge and recent innovations in the synthesis of pure and improved grades of fly ash zeolites (FAZ). Addressing improvements to conventional methods, it also showcases a novel technique for the synthesis of high cation exchangers from fly ash and detailed characterization techniques for the products obtained. In addition, it examines in detail various areas of specific applications of fly ash zeolites. Over the years, several methods such as hydrothermal, fusion prior to hydrothermal, microwave assisted hydrothermal and molten salt techniques for producing FAZ have been developed. However, one-step and two-step reactions between the fly ash and alkali usually generate alkaline wastes that may cause environmental contamination. In addition, the separation of FAZ from the partially activated fly ash (the impurities) remains a major concern for researchers and industrialists alike. In view of these challenges, this book presents a novel technique for three-step activation (TSA), which focuses on recycling the fly ash-NaOH-water reaction by-products until zeolitic residue is formed. The FAZ (the final residue after third step reactions) synthesized in this manner exhibits exceptionally high cation exchange capacity, specific surface area and pore area. This book offers a comprehensive compendium of reading material on fly ash and its recycled product, the zeolites. Students at both undergraduate and graduate levels, researchers, and practicing engineers will all find this book to be a valuable guide in their respective fields.
The rise of rapid and uncontrolled industrialization, its alarming levels of hazardous waste produced, and their negative contribution to the international environmental epidemic of global warming — in addition to the decrease in room to dispose of these wastes safely — have put the pressure for many engineers, researchers, and key decision-makers to find the answers to the constant tussle between progress and sustainability — and quickly. Environmental Geotechnology revisits existing concepts of geotechnical engineering critically, and brings them up to date with new knowledge and current affairs so as to better address and serve today's needs of the professionals. It points out the role and importance of the parameters and mechanisms that govern the interaction of contaminants with geomaterials (soil and rock mass), and also discusses their degradation in the long-run, and the consequences that follow. The book starts from a engineering philosophy that incorporates the influence of environmental effects (both manmade and natural) on geotechnical engineering practices. Its contents are based on geotechnical and environmental engineering studies pertaining to waste management, such as: the safe handling, transportation and disposal of waste, the estimation of waste leakage into the subsurface, its consequences, methods of containment, and the development of schemes to remediate contaminated land. It also proposes innovative strategies for waste management through the utilization of wastes based on a comprehensive characterization. Modelling techniques such as accelerated physical modelling using geotechnical centrifuge, finite-element or difference-based numerical modelling and physico-chemico-mineralogical modelling are discussed in this book to enable the study of the complex (and otherwise slow) process of contaminant-geomaterial interaction.
This book presents a thorough review of the state-of-knowledge and recent innovations in the synthesis of pure and improved grades of fly ash zeolites (FAZ). Addressing improvements to conventional methods, it also showcases a novel technique for the synthesis of high cation exchangers from fly ash and detailed characterization techniques for the products obtained. In addition, it examines in detail various areas of specific applications of fly ash zeolites. Over the years, several methods such as hydrothermal, fusion prior to hydrothermal, microwave assisted hydrothermal and molten salt techniques for producing FAZ have been developed. However, one-step and two-step reactions between the fly ash and alkali usually generate alkaline wastes that may cause environmental contamination. In addition, the separation of FAZ from the partially activated fly ash (the impurities) remains a major concern for researchers and industrialists alike. In view of these challenges, this book presents a novel technique for three-step activation (TSA), which focuses on recycling the fly ash-NaOH-water reaction by-products until zeolitic residue is formed. The FAZ (the final residue after third step reactions) synthesized in this manner exhibits exceptionally high cation exchange capacity, specific surface area and pore area. This book offers a comprehensive compendium of reading material on fly ash and its recycled product, the zeolites. Students at both undergraduate and graduate levels, researchers, and practicing engineers will all find this book to be a valuable guide in their respective fields.
|
You may like...
Dinamiese Ouditkunde - 'n Studente…
B. Marx, Alex van der Watt, …
Paperback
Foreign Crops and Markets, Vol. 84…
U S Foreign Agricultural Service
Paperback
R345
Discovery Miles 3 450
Managing Sports Teams - Economics…
Stefan Walzel, Verena Roemisch
Hardcover
R5,004
Discovery Miles 50 040
The Fats and Oils Situation: May 1958…
U S Agricultural Marketing Service
Paperback
R357
Discovery Miles 3 570
Managerial Accounting, Finance And…
H. van Romburg, J. Swanepoel, …
Paperback
|