![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
After a brief outline of magnetohydrodynamic theory, this introductory book discusses the macroscopic aspects of MHD turbulence, and covers the small-scale scaling properties. Applications are provided for astrophysical and laboratory systems. Magnetic turbulence is the natural state of most astrophysical systems, such as stellar convection zones, stellar winds or accretion discs. It is also found in laboratory devices, most notably in the reversed field pinch.
This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressible (in particular, supersonic) turbulence. Because of the similarities in the theoretical approach, these chapters start with a brief account of the corresponding methods developed in hydrodynamic turbulence. The final part of the book is devoted to astrophysical applications: turbulence in the solar wind, in accretion disks, and in the interstellar medium. This book is suitable for graduate students and researchers working in turbulence theory, plasma physics and astrophysics.
This book provides a comprehensive introduction to the theory of magnetic field line reconnection, now a major subject in plasma physics. Biskamp focuses on the various reconnection mechanisms dominating magnetic processes under the different plasma conditions encountered in astrophysical systems and in laboratory fusion devices. The book consists of two major parts: the first deals with the classical resistive approach, while the second presents an overview of weakly collisional or collisionless plasmas. Applications primarily concern astrophysical phenomena and dynamo theory, with emphasis on the solar and geodynamo, as well as magnetospheric substorms--the most spectacular reconnection events in the magnetospheric plasma. The theoretical procedures and results also apply directly to reconnection processes in laboratory plasmas, in particular the sawtooth phenomenon in tokamaks. The book will be of value to graduate students and researchers interested in magnetic processes both in astrophysical and laboratory plasma physics.
This book provides a self-contained introduction to magnetohydrodynamics (MHD), with emphasis on nonlinear processes. The book outlines the conventional aspects of MHD theory, magnetostatic equilibrium and linear stability theory. It concentrates on nonlinear theory, starting with the evolution and saturation of individual ideal and resistive instabilities, continuing with a detailed analysis of magnetic reconnection and concluding with a study of the most complex nonlinear behavior, that of MHD turbulence. The last chapters describe three important applications of the theory: disruptive processes in tokomaks, MHD effects in the reversed field pinch, and solar flares.
This book, first published in 2000, provides a comprehensive introduction to the theory of magnetic field line reconnection, now a major subject in plasma physics. The book focuses on the various reconnection mechanisms dominating magnetic processes under the different plasma conditions encountered in astrophysical systems and in laboratory fusion devices. The book consists of two major parts: the first deals with the classical resistive approach, while the second presents an overview of weakly collisional or collisionless plasmas. Applications primarily concern astrophysical phenomena and dynamo theory, with emphasis on the solar and geodynamo, as well as magnetospheric substorms, the most spectacular reconnection events in the magnetospheric plasma. The theoretical procedures and results also apply directly to reconnection processes in laboratory plasmas, in particular the sawtooth phenomenon in tokamaks. The book will be of value to graduate students and researchers interested in magnetic processes both in astrophysical and laboratory plasma physics.
|
![]() ![]() You may like...
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe
Paperback
![]()
Purposeful Leadership For Africa In The…
Lumkile Wiseman Nkuhlu
Paperback
Trinidad and Tobago and Guyana - Race…
Ann Marie Bissessar, John Gaffar La Guerre
Hardcover
One God - One Cult - One Nation…
Reinhard G Kratz, Hermann Spieckermann
Hardcover
R5,754
Discovery Miles 57 540
Hiking Beyond Cape Town - 40 Inspiring…
Nina du Plessis, Willie Olivier
Paperback
BTEC National Health and Social Care…
Carolyn Aldworth, Nicola Matthews, …
Paperback
R1,072
Discovery Miles 10 720
|