Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 17 of 17 matches in All Departments
This book explores recent developments in theoretical research and data analysis of real-world complex systems, organized in three parts, namely Entropy, information, and complexity functions Multistability, oscillations, and rhythmic synchronization Diffusions, rotation, and convection in fluids The collection of works devoted to the memory of Professor Valentin Afraimovich provides a deep insight into the recent developments in complexity science by introducing new concepts, methods, and applications in nonlinear dynamical systems covering physical problems and mathematical modelling relevant to economics, genetics, engineering vibrations, as well as classic problems in physics, fluid and climate dynamics, and urban dynamics. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering. It can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists, and urban planners.
This book demonstrates how mathematical methods and techniques can be used in synergy and create a new way of looking at complex systems. It becomes clear nowadays that the standard (graph-based) network approach, in which observable events and transportation hubs are represented by nodes and relations between them are represented by edges, fails to describe the important properties of complex systems, capture the dependence between their scales, and anticipate their future developments. Therefore, authors in this book discuss the new generalized theories capable to describe a complex nexus of dependences in multi-level complex systems and to effectively engineer their important functions. The collection of works devoted to the memory of Professor Valentin Afraimovich introduces new concepts, methods, and applications in nonlinear dynamical systems covering physical problems and mathematical modelling relevant to molecular biology, genetics, neurosciences, artificial intelligence as well as classic problems in physics, machine learning, brain and urban dynamics. The book can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists, urban planners, and even musicians (with some mathematical background).
This book presents recent developments in nonlinear dynamics and physics with an emphasis on complex systems. The contributors provide recent theoretic developments and new techniques to solve nonlinear dynamical systems and help readers understand complexity, stochasticity, and regularity in nonlinear dynamical systems. This book covers integro-differential equation solvability, Poincare recurrences in ergodic systems, orientable horseshoe structure, analytical routes of periodic motions to chaos, grazing on impulsive differential equations, from chaos to order in coupled oscillators, and differential-invariant solutions for automorphic systems, inequality under uncertainty.
Most networks and databases that humans have to deal with contain large, albeit finite number of units. Their structure, for maintaining functional consistency of the components, is essentially not random and calls for a precise quantitative description of relations between nodes (or data units) and all network components. This book is an introduction, for both graduate students and newcomers to the field, to the theory of graphs and random walks on such graphs. The methods based on random walks and diffusions for exploring the structure of finite connected graphs and databases are reviewed (Markov chain analysis). This provides the necessary basis for consistently discussing a number of applications such diverse as electric resistance networks, estimation of land prices, urban planning, linguistic databases, music, and gene expression regulatory networks.
This book introduces and studies a number of stochastic models of subsistence, communication, social evolution and political transition that will allow the reader to grasp the role of uncertainty as a fundamental property of our irreversible world. At the same time, it aims to bring about a more interdisciplinary and quantitative approach across very diverse fields of research in the humanities and social sciences. Through the examples treated in this work - including anthropology, demography, migration, geopolitics, management, and bioecology, among other things - evidence is gathered to show that volatile environments may change the rules of the evolutionary selection and dynamics of any social system, creating a situation of adaptive uncertainty, in particular, whenever the rate of change of the environment exceeds the rate of adaptation. Last but not least, it is hoped that this book will contribute to the understanding that inherent randomness can also be a great opportunity - for social systems and individuals alike - to help face the challenge of "survival under uncertainty".
Cities can be considered to be among the largest and most complex artificial networks created by human beings. Due to the numerous and diverse human-driven activities, urban network topology and dynamics can differ quite substantially from that of natural networks and so call for an alternative method of analysis. The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan. Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.
This book explores recent developments in theoretical research and mathematical modelling of real-world complex systems, organized in four parts. The first part of the book is devoted to the mathematical tools for the design and analysis in engineering and social science study cases. We discuss the periodic evolutions in nonlinear chemical processes, vibro-compact systems and their behaviour, different types of metal-semiconductor self-assembled samples, made of silver nanowires and zinc oxide nanorods. The second part of the book is devoted to mathematical description and modelling of the critical events, climate change and robust emergency scales. In three chapters, we consider a climate-economy model with endogenous carbon intensity and the behaviour of Tehran Stock Exchange market under international sanctions. The third part of the book is devoted to fractional dynamic and fractional control problems. We discuss the novel operational matrix technique for variable-order fractional optimal control problems, the nonlinear variable-order time fractional convection-diffusion equation with generalized polynomials The fourth part of the book concerns solvability and inverse problems in differential and integro-differential equations. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering. It can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists and urban planners.
This book presents select, recent developments in nonlinear and complex systems reported at the 1st Online Conference on Nonlinear Dynamics and Complexity, held on November 23-25, 2020. It provides an exchange recent developments, discoveries, and progresses in Nonlinear Dynamics and Complexity. The collection presents fundamental and frontier theories and techniques for modern science and technology, stimulates more research interest for exploration of nonlinear science and complexity; and passes along new knowledge and insight to the next generation of engineers and technologists in a range of fields.
The book is an introduction, for both graduate students and newcomers to the field of the modern theory of mesoscopic complex systems, time series, hypergraphs and graphs, scaled random walks, and modern information theory. As these are applied for the exploration and characterization of complex systems. Our self-consistent review provides the necessary basis for consistency. We discuss a number of applications such diverse as urban structures and musical compositions.
This book presents recent developments in nonlinear dynamics and physics with an emphasis on complex systems. The contributors provide recent theoretic developments and new techniques to solve nonlinear dynamical systems and help readers understand complexity, stochasticity, and regularity in nonlinear dynamical systems. This book covers integro-differential equation solvability, Poincare recurrences in ergodic systems, orientable horseshoe structure, analytical routes of periodic motions to chaos, grazing on impulsive differential equations, from chaos to order in coupled oscillators, and differential-invariant solutions for automorphic systems, inequality under uncertainty.
This book introduces and studies a number of stochastic models of subsistence, communication, social evolution and political transition that will allow the reader to grasp the role of uncertainty as a fundamental property of our irreversible world. At the same time, it aims to bring about a more interdisciplinary and quantitative approach across very diverse fields of research in the humanities and social sciences. Through the examples treated in this work - including anthropology, demography, migration, geopolitics, management, and bioecology, among other things - evidence is gathered to show that volatile environments may change the rules of the evolutionary selection and dynamics of any social system, creating a situation of adaptive uncertainty, in particular, whenever the rate of change of the environment exceeds the rate of adaptation. Last but not least, it is hoped that this book will contribute to the understanding that inherent randomness can also be a great opportunity - for social systems and individuals alike - to help face the challenge of "survival under uncertainty".
Most networks and databases that humans have to deal with contain large, albeit finite number of units. Their structure, for maintaining functional consistency of the components, is essentially not random and calls for a precise quantitative description of relations between nodes (or data units) and all network components. This book is an introduction, for both graduate students and newcomers to the field, to the theory of graphs and random walks on such graphs. The methods based on random walks and diffusions for exploring the structure of finite connected graphs and databases are reviewed (Markov chain analysis). This provides the necessary basis for consistently discussing a number of applications such diverse as electric resistance networks, estimation of land prices, urban planning, linguistic databases, music, and gene expression regulatory networks.
This book presents select, recent developments in nonlinear and complex systems reported at the 1st Online Conference on Nonlinear Dynamics and Complexity, held on November 23-25, 2020. It provides an exchange recent developments, discoveries, and progresses in Nonlinear Dynamics and Complexity. The collection presents fundamental and frontier theories and techniques for modern science and technology, stimulates more research interest for exploration of nonlinear science and complexity; and passes along new knowledge and insight to the next generation of engineers and technologists in a range of fields.Â
This book presents recent developments in nonlinear and complex systems. It provides recent theoretic developments and new techniques based on a nonlinear dynamical systems approach that can be used to model and understand complex behavior in nonlinear dynamical systems. It covers information theory, relativistic chaotic dynamics, data analysis, relativistic chaotic dynamics, solvability issues in integro-differential equations, and inverse problems for parabolic differential equations, synchronization and chaotic transient. Presents new concepts for understanding and modeling complex systems Â
This book explores recent developments in theoretical research and data analysis of real-world complex systems, organized in three parts, namely Entropy, information, and complexity functions Multistability, oscillations, and rhythmic synchronization Diffusions, rotation, and convection in fluids The collection of works devoted to the memory of Professor Valentin Afraimovich provides a deep insight into the recent developments in complexity science by introducing new concepts, methods, and applications in nonlinear dynamical systems covering physical problems and mathematical modelling relevant to economics, genetics, engineering vibrations, as well as classic problems in physics, fluid and climate dynamics, and urban dynamics. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering. It can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists, and urban planners.
This book demonstrates how mathematical methods and techniques can be used in synergy and create a new way of looking at complex systems. It becomes clear nowadays that the standard (graph-based) network approach, in which observable events and transportation hubs are represented by nodes and relations between them are represented by edges, fails to describe the important properties of complex systems, capture the dependence between their scales, and anticipate their future developments. Therefore, authors in this book discuss the new generalized theories capable to describe a complex nexus of dependences in multi-level complex systems and to effectively engineer their important functions. The collection of works devoted to the memory of Professor Valentin Afraimovich introduces new concepts, methods, and applications in nonlinear dynamical systems covering physical problems and mathematical modelling relevant to molecular biology, genetics, neurosciences, artificial intelligence as well as classic problems in physics, machine learning, brain and urban dynamics. The book can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists, urban planners, and even musicians (with some mathematical background).
This book presents recent developments in nonlinear and complex systems. It provides recent theoretic developments and new techniques based on a nonlinear dynamical systems approach that can be used to model and understand complex behavior in nonlinear dynamical systems. It covers information theory, relativistic chaotic dynamics, data analysis, relativistic chaotic dynamics, solvability issues in integro-differential equations, and inverse problems for parabolic differential equations, synchronization and chaotic transient. Presents new concepts for understanding and modeling complex systems
|
You may like...
Legal Traditions in Louisiana and the…
Sean Patrick Donlan, Vernon Valentine Palmer
Hardcover
R2,089
Discovery Miles 20 890
Historical Introduction to the Roman…
Frederick Parker Walton
Hardcover
R1,733
Discovery Miles 17 330
The Art of DuckTales (Deluxe Edition)
Ken Plume, Disney
Hardcover
|