Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
There are many methods of stable controller design for nonlinear
systems. In seeking to go beyond the minimum requirement of
stability, Adaptive Dynamic Programming in Discrete Time approaches
the challenging topic of optimal control for nonlinear systems
using the tools of adaptive dynamic programming (ADP). The range of
systems treated is extensive; affine, switched, singularly
perturbed and time-delay nonlinear systems are discussed as are the
uses of neural networks and techniques of value and policy
iteration. The text features three main aspects of ADP in which the
methods proposed for stabilization and for tracking and games
benefit from the incorporation of optimal control methods:
This book reports on the latest advances in adaptive critic control with robust stabilization for uncertain nonlinear systems. Covering the core theory, novel methods, and a number of typical industrial applications related to the robust adaptive critic control field, it develops a comprehensive framework of robust adaptive strategies, including theoretical analysis, algorithm design, simulation verification, and experimental results. As such, it is of interest to university researchers, graduate students, and engineers in the fields of automation, computer science, and electrical engineering wishing to learn about the fundamental principles, methods, algorithms, and applications in the field of robust adaptive critic control. In addition, it promotes the development of robust adaptive critic control approaches, and the construction of higher-level intelligent systems.
There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming in Discrete Time approaches the challenging topic of optimal control for nonlinear systems using the tools of adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: * infinite-horizon control for which the difficulty of solving partial differential Hamilton-Jacobi-Bellman equations directly is overcome, and proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; * finite-horizon control, implemented in discrete-time nonlinear systems showing the reader how to obtain suboptimal control solutions within a fixed number of control steps and with results more easily applied in real systems than those usually gained from infinite-horizon control; * nonlinear games for which a pair of mixed optimal policies are derived for solving games both when the saddle point does not exist, and, when it does, avoiding the existence conditions of the saddle point. Non-zero-sum games are studied in the context of a single network scheme in which policies are obtained guaranteeing system stability and minimizing the individual performance function yielding a Nash equilibrium. In order to make the coverage suitable for the student as well as for the expert reader, Adaptive Dynamic Programming in Discrete Time: * establishes the fundamental theory involved clearly with each chapter devoted to a clearly identifiable control paradigm; * demonstrates convergence proofs of the ADP algorithms to deepen understanding of the derivation of stability and convergence with the iterative computational methods used; and * shows how ADP methods can be put to use both in simulation and in real applications. This text will be of considerable interest to researchers interested in optimal control and its applications in operations research, applied mathematics computational intelligence and engineering. Graduate students working in control and operations research will also find the ideas presented here to be a source of powerful methods for furthering their study.
This volume constitutes the proceedings of the 4th International Conference on Frontiers in Cyber Security, FCS 2021, held in Haikou, China, in December 2021. The 20 full papers along with the 2 short papers presented were carefully reviewed and selected from 58 submissions. The papers are organized in topical sections on: intelligent security; system security; network security; multimedia security; privacy, risk and trust; data and application security.
This book constitutes the refereed proceedings of the 16th International Conference on Information Security Practice and Experience, ISPEC 2021, held in Nanjing, China, in December 2021. The 23 full papers presented in this volume were carefully reviewed and selected from 94 submissions. The conference focus on new information security technologies, including their applications and their integration with IT systems in various vertical sectors.
This book constitutes the refereed proceedings of the Third International Conference on Security and Privacy in New Computing Environments, SPNCE 2020, held in August 2020. Due to COVID-19 pandemic the conference was held virtually. The 31 full papers were selected from 63 submissions and are grouped into topics on network security; system security; machine learning; authentication and access control; cloud security; cryptography; applied cryptography.
This book constitutes the refereed proceedings of the 5th International Conference on Security and Privacy in New Computing Environments, SPNCE 2022, held in Xi’an, china, in December 30-31, 2022. The 12 full papers were selected from 38 submissions and are grouped in thematical parts as: authentication and key agreement; data security; network security.
This book reports on the latest advances in adaptive critic control with robust stabilization for uncertain nonlinear systems. Covering the core theory, novel methods, and a number of typical industrial applications related to the robust adaptive critic control field, it develops a comprehensive framework of robust adaptive strategies, including theoretical analysis, algorithm design, simulation verification, and experimental results. As such, it is of interest to university researchers, graduate students, and engineers in the fields of automation, computer science, and electrical engineering wishing to learn about the fundamental principles, methods, algorithms, and applications in the field of robust adaptive critic control. In addition, it promotes the development of robust adaptive critic control approaches, and the construction of higher-level intelligent systems.
|
You may like...
Five Nights at Freddy's Graphic Novel…
Scott Cawthon, Elley Cooper, …
Other merchandize
|