Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Thoroughly revised and updated, The Art of Modeling in Science and Engineering with Mathematica (R), Second Edition explores the mathematical tools and procedures used in modeling based on the laws of conservation of mass, energy, momentum, and electrical charge. The authors have culled and consolidated the best from the first edition and expanded the range of applied examples to reach a wider audience. The text proceeds, in measured steps, from simple models of real-world problems at the algebraic and ordinary differential equations (ODE) levels to more sophisticated models requiring partial differential equations. The traditional solution methods are supplemented with Mathematica , which is used throughout the text to arrive at solutions for many of the problems presented. The text is enlivened with a host of illustrations and practice problems drawn from classical and contemporary sources. They range from Thomson's famous experiment to determine e/m and Euler's model for the buckling of a strut to an analysis of the propagation of emissions and the performance of wind turbines. The mathematical tools required are first explained in separate chapters and then carried along throughout the text to solve and analyze the models. Commentaries at the end of each illustration draw attention to the pitfalls to be avoided and, perhaps most important, alert the reader to unexpected results that defy conventional wisdom. These features and more make the book the perfect tool for resolving three common difficulties: the proper choice of model, the absence of precise solutions, and the need to make suitable simplifying assumptions and approximations. The book covers a wide range of physical processes and phenomena drawn from various disciplines and clearly illuminates the link between the physical system being modeled and the mathematical expression that results.
This unique approach to the basic concepts of adsorption is written for students, engineers, scientists, and others who need a clear presentation of adsorption processes. Unlike other texts on this subject, which are written for the specialist and rely heavily on advanced mathematics, this unique book helps you solve everyday problems in applications of adsorption, without complex mathematics or computers. The author, a recognized expert in the field, gives you a quick introduction to the underlying physics of absorption and explains how to apply adsorption to solve analytical and design problems. Rich with practical examples and enhanced by illustrations that support the text, this refreshingly straightforward presentation helps you cut through the complexities of adsorption to find fast answers to pressing real-world questions.
Mass transfer along with separation processes is an area that is often quite challenging to master, as most volumes currently available complicate the learning by teaching mass transfer linked with heat transfer, rather than focusing on more relevant techniques. With this thoroughly updated second edition, Mass Transfer and Separation Processes: Principles and Applications presents a highly thoughtful and instructive introduction to this sophisticated material by teaching mass transfer and separation processes as unique though related entities. In an ever increasing effort to demystify the subject, with this edition, the author- Avoids more complex separation processes Places a greater emphasis on the art of simplifying assumptions Conveys a greater sense of scale with the inclusion of numerous photos of actual installations Makes the math only as complicated as necessary while reviewing fundamental principles that may have been forgotten The book explores essential principles and reinforces the concepts with classical and contemporary illustrations drawn from the engineering, environmental, and biological sciences. The theories of heat conduction and transfer are utilized not so much to draw analogies but rather to make fruitful use of existing solutions not seen in other texts on the subject. Both an introductory resource and a reference, this important text serves environmental, biomedical, and engineering professionals, as well as anyone wishing to gain a grasp on this subject and its increasing relevance across a number of fields. It fills a void in traditional chemical engineering literature by providing access to the principles and working practices that allow masstransfer theory to be applied to separation processes.
Thoroughly revised and updated, The Art of Modeling in Science and Engineering with "Mathematica(R)," Second Edition explores the mathematical tools and procedures used in modeling based on the laws of conservation of mass, energy, momentum, and electrical charge. The authors have culled and consolidated the best from the first edition and expanded the range of applied examples to reach a wider audience. The text proceeds, in measured steps, from simple models of real-world problems at the algebraic and ordinary differential equations (ODE) levels to more sophisticated models requiring partial differential equations. The traditional solution methods are supplemented with "Mathematica," which is used throughout the text to arrive at solutions for many of the problems presented. The text is enlivened with a host of illustrations and practice problems drawn from classical and contemporary sources. They range from Thomson's famous experiment to determine e/m and Euler's model for the buckling of a strut to an analysis of the propagation of emissions and the performance of wind turbines. The mathematical tools required are first explained in separate chapters and then carried along throughout the text to solve and analyze the models. Commentaries at the end of each illustration draw attention to the pitfalls to be avoided and, perhaps most important, alert the reader to unexpected results that defy conventional wisdom. These features and more make the book the perfect tool for resolving three common difficulties: the proper choice of model, the absence of precise solutions, and the need to make suitable simplifying assumptions and approximations. The book covers a wide range ofphysical processes and phenomena drawn from various disciplines and clearly illuminates the link between the physical system being modeled and the mathematical expression that results.
This unique approach to the basic concepts of adsorption is written
for students, engineers, scientists, and others who need a clear
presentation of adsorption processes. Unlike other texts on this
subject, which are written for the specialist and rely heavily on
advanced mathematics, this unique book helps you solve everyday
problems in applications of adsorption, without complex mathematics
or computers.
This textbook is designed for junior/senior (3rd, 4th year) students in engineering and the physical sciences who are taking courses in mathematical modeling or applied mathematics. The text introduces the reader to setting up and solving mathematical models and physical systems based on algebraic and ordinary differential equations. Unlike the competition, it is less mathematical and focuses more on the description of physical systems. It contains numerous classical and modern illustrations drawn from the sciences, engineering, and economics accompanied by detailed descriptions of the underlying physics and mathematics.
|
You may like...
|