Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
This book is an extended version of lectures given by the ?rst author in 1995-1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appeared in connection with problems of geometric optics and celestial mechanics. Later it became clear that these equations describe a large classof systemsin classical mechanics, physics, chemistry, and otherdomains. Hamiltonian systems and their discrete analogs play a basic role in such problems as rigid body dynamics, geodesics on Riemann surfaces, quasi-classic approximation in quantum mechanics, cosmological models, dynamics of particles in an accel- ator, billiards and other systems with elastic re?ections, many in?nite-dimensional models in mathematical physics, etc. In this book we study Hamiltonian systems assuming that they depend on some parameter (usually?), where for?= 0 the dynamics is in a sense simple (as a rule, integrable). Frequently such a parameter appears naturally. For example, in celestial mechanics it is accepted to take? equal to the ratio: the mass of Jupiter over the mass of the Sun. In other cases it is possible to introduce the small parameter ar- ?cial
This book is an extended version of lectures given by the ?rst author in 1995-1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appeared in connection with problems of geometric optics and celestial mechanics. Later it became clear that these equations describe a large classof systemsin classical mechanics, physics, chemistry, and otherdomains. Hamiltonian systems and their discrete analogs play a basic role in such problems as rigid body dynamics, geodesics on Riemann surfaces, quasi-classic approximation in quantum mechanics, cosmological models, dynamics of particles in an accel- ator, billiards and other systems with elastic re?ections, many in?nite-dimensional models in mathematical physics, etc. In this book we study Hamiltonian systems assuming that they depend on some parameter (usually?), where for?= 0 the dynamics is in a sense simple (as a rule, integrable). Frequently such a parameter appears naturally. For example, in celestial mechanics it is accepted to take? equal to the ratio: the mass of Jupiter over the mass of the Sun. In other cases it is possible to introduce the small parameter ar- ?cial
|
You may like...
Students Must Rise - Youth Struggle In…
Anne Heffernan, Noor Nieftagodien
Paperback
(1)
|