0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Bernoulli Numbers and Zeta Functions (Hardcover, 2014): Tsuneo Arakawa, Tomoyoshi Ibukiyama, Masanobu Kaneko Bernoulli Numbers and Zeta Functions (Hardcover, 2014)
Tsuneo Arakawa, Tomoyoshi Ibukiyama, Masanobu Kaneko; Contributions by Don B. Zagier
R4,005 Discovery Miles 40 050 Ships in 12 - 17 working days

Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of "p"-adic measures; the Euler Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; class number formula for positive definite binary quadratic forms; congruences between some class numbers and Bernoulli numbers; simple zeta functions of prehomogeneous vector spaces; Hurwitz numbers; Barnes multiple zeta functions and their special values; the functional equation of the double zeta functions; and poly-Bernoulli numbers. An appendix by Don Zagier on curious and exotic identities for Bernoulli numbers is also supplied. This book will be enjoyable both for amateurs and for professional researchers. Because the logical relations between the chapters are loosely connected, readers can start with any chapter depending on their interests. The expositions of the topics are not always typical, and some parts are completely new."

Bernoulli Numbers and Zeta Functions (Paperback, Softcover reprint of the original 1st ed. 2014): Tsuneo Arakawa, Tomoyoshi... Bernoulli Numbers and Zeta Functions (Paperback, Softcover reprint of the original 1st ed. 2014)
Tsuneo Arakawa, Tomoyoshi Ibukiyama, Masanobu Kaneko; Contributions by Don B. Zagier
R4,763 Discovery Miles 47 630 Ships in 10 - 15 working days

Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen-von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler-Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; class number formula for positive definite binary quadratic forms; congruences between some class numbers and Bernoulli numbers; simple zeta functions of prehomogeneous vector spaces; Hurwitz numbers; Barnes multiple zeta functions and their special values; the functional equation of the doub le zeta functions; and poly-Bernoulli numbers. An appendix by Don Zagier on curious and exotic identities for Bernoulli numbers is also supplied. This book will be enjoyable both for amateurs and for professional researchers. Because the logical relations between the chapters are loosely connected, readers can start with any chapter depending on their interests. The expositions of the topics are not always typical, and some parts are completely new.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Carriwell Seamless Drop Cup Nursing Bra…
R796 Discovery Miles 7 960
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Jurassic World: Camp Cretaceous - Season…
DVD  (1)
R133 Discovery Miles 1 330
Baby Dove Lotion Sensitive 200ml
R50 Discovery Miles 500
Sport Game Throw Ring Set (5 Rings)
R199 Discovery Miles 1 990
Salton S1I260 Perfect Temperature Iron…
R269 R252 Discovery Miles 2 520
Die Man Wattie Kinnes Vang
Nathan Trantraal Paperback R290 R99 Discovery Miles 990
Snappy Tritan Bottle (1.5L)(Blue)
R229 R179 Discovery Miles 1 790
Lucky Plastic 3-in-1 Nose Ear Trimmer…
R289 Discovery Miles 2 890

 

Partners