Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
While standardization has empowered the software industry to substantially scale software development and to provide affordable software to a broad market, it often does not address smaller market segments, nor the needs and wishes of individual customers. Software product lines reconcile mass production and standardization with mass customization in software engineering. Ideally, based on a set of reusable parts, a software manufacturer can generate a software product based on the requirements of its customer. The concept of features is central to achieving this level of automation, because features bridge the gap between the requirements the customer has and the functionality a product provides. Thus features are a central concept in all phases of product-line development. The authors take a developer's viewpoint, focus on the development, maintenance, and implementation of product-line variability, and especially concentrate on automated product derivation based on a user's feature selection. The book consists of three parts. Part I provides a general introduction to feature-oriented software product lines, describing the product-line approach and introducing the product-line development process with its two elements of domain and application engineering. The pivotal part II covers a wide variety of implementation techniques including design patterns, frameworks, components, feature-oriented programming, and aspect-oriented programming, as well as tool-based approaches including preprocessors, build systems, version-control systems, and virtual separation of concerns. Finally, part III is devoted to advanced topics related to feature-oriented product lines like refactoring, feature interaction, and analysis tools specific to product lines. In addition, an appendix lists various helpful tools for software product-line development, along with a description of how they relate to the topics covered in this book. To tie the book together, the authors use two running examples that are well documented in the product-line literature: data management for embedded systems, and variations of graph data structures. They start every chapter by explicitly stating the respective learning goals and finish it with a set of exercises; additional teaching material is also available online. All these features make the book ideally suited for teaching - both for academic classes and for professionals interested in self-study.
While standardization has empowered the software industry to substantially scale software development and to provide affordable software to a broad market, it often does not address smaller market segments, nor the needs and wishes of individual customers. Software product lines reconcile mass production and standardization with mass customization in software engineering. Ideally, based on a set of reusable parts, a software manufacturer can generate a software product based on the requirements of its customer. The concept of features is central to achieving this level of automation, because features bridge the gap between the requirements the customer has and the functionality a product provides. Thus features are a central concept in all phases of product-line development. The authors take a developer's viewpoint, focus on the development, maintenance, and implementation of product-line variability, and especially concentrate on automated product derivation based on a user's feature selection. The book consists of three parts. Part I provides a general introduction to feature-oriented software product lines, describing the product-line approach and introducing the product-line development process with its two elements of domain and application engineering. The pivotal part II covers a wide variety of implementation techniques including design patterns, frameworks, components, feature-oriented programming, and aspect-oriented programming, as well as tool-based approaches including preprocessors, build systems, version-control systems, and virtual separation of concerns. Finally, part III is devoted to advanced topics related to feature-oriented product lines like refactoring, feature interaction, and analysis tools specific to product lines. In addition, an appendix lists various helpful tools for software product-line development, along with a description of how they relate to the topics covered in this book. To tie the book together, the authors use two running examples that are well documented in the product-line literature: data management for embedded systems, and variations of graph data structures. They start every chapter by explicitly stating the respective learning goals and finish it with a set of exercises; additional teaching material is also available online. All these features make the book ideally suited for teaching - both for academic classes and for professionals interested in self-study.
This book is an anthology of the results of research and development in database query processing during the past decade. The relational model of data provided tremendous impetus for research into query processing. Since a relational query does not specify access paths to the stored data, the database management system (DBMS) must provide an intelligent query-processing subsystem which will evaluate a number of potentially efficient strategies for processing the query and select the one that optimizes a given performance measure. The degree of sophistication of this subsystem, often called the optimizer, critically affects the performance of the DBMS. Research into query processing thus started has taken off in several directions during the past decade. The emergence of research into distributed databases has enormously complicated the tasks of the optimizer. In a distributed environment, the database may be partitioned into horizontal or vertical fragments of relations. Replicas of the fragments may be stored in different sites of a network and even migrate to other sites. The measure of performance of a query in a distributed system must include the communication cost between sites. To minimize communication costs for-queries involving multiple relations across multiple sites, optimizers may also have to consider semi-join techniques.
Program generation holds the promise of helping to bridge the gap between application-level problem solutions and efficient implementations at the level of today's source programs as written in C or Java. Thus, program generation can substantially contribute to reducing production cost and time-to-market in future software production, while improving the quality and stability of the product. This book is about domain-specific program generation; it is the outcome of a Dagstuhl seminar on the topic held in March 2003. After an introductory preface by the volume editors, the 18 carefully reviewed revised full papers presented are organized into topical sections on - surveys of domain-specific programming technologies
This book constitutes the refereed proceedings of the ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Component Engineering, GPCE 2002, held in Pittsburgh, PA, USA in October 2002.The 18 revised full papers presented were carefully reviewed and selected from 39 submissions. Among the topics covered are generative programming, meta-programming, program specialization, program analysis, program transformation, domain-specific languages, software architectures, aspect-oriented programming, and component-based systems.
|
You may like...
|