0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Actinide Speciation in High Ionic Strength Media - Experimental and Modeling Approaches to Predicting Actinide Speciation and... Actinide Speciation in High Ionic Strength Media - Experimental and Modeling Approaches to Predicting Actinide Speciation and Migration in the Subsurface (Hardcover, 1999 ed.)
Donald T. Reed, Sue B. Clark, Linfeng Rao
R4,595 Discovery Miles 45 950 Ships in 10 - 15 working days

The management and disposal of radioactive wastes are key international issues requiring a sound, fundamental scientific basis to insure public and environmental protection. Large quantities of existing nuclear waste must be treated to encapsulate the radioactivity in a form suitable for disposal. The treatment of this waste, due to its extreme diversity, presents tremendous engineering and scientific challenges. Geologic isolation of transuranic waste is the approach currently proposed by all nuclear countries for its final disposal. To be successful in this endeavor, it is necessary to understand the behavior of plutonium and the other actinides in relevant environmental media. Conceptual models for stored high level waste and waste repository systems present many sCientific difficulties due to their complexity and non-ideality. For example, much of the high level nuclear waste in the US is stored as alkaline concentrated electrolyte materials, where the chemistry of the actinides under such conditions is not well understood. This lack of understanding limits the successful separation and treatment of these wastes. Also, countries such as the US and Germany plan to dispose of actinide bearing wastes in geologic salt deposits. In this case, understanding the speciation and transport properties of actinides in brines is critical for confidence in repository performance and risk assessment activities. Many deep groundwaters underlying existing contaminated sites are also high in ionic strength. Until recently, the scientific basis for describing actinide chemistry in such systems was extremely limited."

Actinide Speciation in High Ionic Strength Media - Experimental and Modeling Approaches to Predicting Actinide Speciation and... Actinide Speciation in High Ionic Strength Media - Experimental and Modeling Approaches to Predicting Actinide Speciation and Migration in the Subsurface (Paperback, Softcover reprint of the original 1st ed. 1999)
Donald T. Reed, Sue B. Clark, Linfeng Rao
R4,356 Discovery Miles 43 560 Ships in 10 - 15 working days

The management and disposal of radioactive wastes are key international issues requiring a sound, fundamental scientific basis to insure public and environmental protection. Large quantities of existing nuclear waste must be treated to encapsulate the radioactivity in a form suitable for disposal. The treatment of this waste, due to its extreme diversity, presents tremendous engineering and scientific challenges. Geologic isolation of transuranic waste is the approach currently proposed by all nuclear countries for its final disposal. To be successful in this endeavor, it is necessary to understand the behavior of plutonium and the other actinides in relevant environmental media. Conceptual models for stored high level waste and waste repository systems present many sCientific difficulties due to their complexity and non-ideality. For example, much of the high level nuclear waste in the US is stored as alkaline concentrated electrolyte materials, where the chemistry of the actinides under such conditions is not well understood. This lack of understanding limits the successful separation and treatment of these wastes. Also, countries such as the US and Germany plan to dispose of actinide bearing wastes in geologic salt deposits. In this case, understanding the speciation and transport properties of actinides in brines is critical for confidence in repository performance and risk assessment activities. Many deep groundwaters underlying existing contaminated sites are also high in ionic strength. Until recently, the scientific basis for describing actinide chemistry in such systems was extremely limited."

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Open Source Database Driven Web…
Isaac Dunlap Paperback R1,228 Discovery Miles 12 280
Boss Like God - A Blueprint for Elite…
K. Lynn Lewis, Beau Mcbeth Hardcover R649 Discovery Miles 6 490
Song Of The Slave Girl
Ashraf Kagee Paperback R300 R277 Discovery Miles 2 770
A Voice in the Wilderness - Archbishop…
Archbishop Carlo Maria Vigano Hardcover R1,035 Discovery Miles 10 350
History of the United States of America…
James Schouler Paperback R825 Discovery Miles 8 250
Robotics and Automation in the Food…
Darwin G Caldwell Hardcover R5,255 Discovery Miles 52 550
The Boy Who Got Accidentally Famous
David Baddiel Paperback R271 Discovery Miles 2 710
The Philosophy of Charlie Kaufman
David Larocca Paperback R964 Discovery Miles 9 640
The Journal of Botany, British and…
Berthold Seemann Paperback R638 Discovery Miles 6 380
A Leader That Everyone Wants to Follow
Ron Godbolt Hardcover R521 R481 Discovery Miles 4 810

 

Partners