![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Harmonic Analysis in China is a collection of surveys and research papers written by distinguished Chinese mathematicians from within the People's Republic of China and expatriates. The book covers topics in analytic function spaces of several complex variables, integral transforms, harmonic analysis on classical Lie groups and manifolds, LP- estimates of the Cauchy-Riemann equations and wavelet transforms. The reader will also be able to trace the great influence of the late Professor Loo-keng Hua's ideas and methods on research into harmonic analysis on classical domains and the theory of functions of several complex variables. Western scientists will thus become acquainted with the unique features and future trends of harmonic analysis in China. Audience: Analysts, as well as engineers and physicists who use harmonic analysis.
This book could have been entitled "Analysis and Geometry." The authors are addressing the following issue: Is it possible to perform some harmonic analysis on a set? Harmonic analysis on groups has a long tradition. Here we are given a metric set X with a (positive) Borel measure ? and we would like to construct some algorithms which in the classical setting rely on the Fourier transformation. Needless to say, the Fourier transformation does not exist on an arbitrary metric set. This endeavor is not a revolution. It is a continuation of a line of research whichwasinitiated, acenturyago, withtwofundamentalpapersthatIwould like to discuss brie?y. The ?rst paper is the doctoral dissertation of Alfred Haar, which was submitted at to University of Gottingen ] in July 1907. At that time it was known that the Fourier series expansion of a continuous function may diverge at a given point. Haar wanted to know if this phenomenon happens for every 2 orthonormal basis of L 0,1]. He answered this question by constructing an orthonormal basis (today known as the Haar basis) with the property that the expansion (in this basis) of any continuous function uniformly converges to that function."
All papers in this volume are original (fully refereed) research reports by participants of the special program on Harmonic Analysis held in the Nankai Institute of Mathematics. The main themes include: Wavelets, Singular Integral Operators, Extemal Functions, H Spaces, Harmonic Analysis on Local Domains and Lie Groups, and so on. See also: G. David "Wavelets and Singular Integrals on Curves and Surfaces," LNM 1465,1991. FROM THE CONTENTS: D.C. Chang: Nankai Lecture in -Neumann Problem.- T.P. Chen, D.Z. Zhang: Oscillary Integral with Polynomial Phase.- D.G. Deng, Y.S. Han: On a Generalized Paraproduct Defined by Non-Convolution.- Y.S. Han: H Boundedness of Calderon-Zygmund Operators for Product Domains.- Z.X. Liu, S.Z. Lu: Applications of H-rmander Multiplier Theorem to Approximation in Real Hardy Spaces.- R.L. Long, F.S. Nie: Weighted Sobolev Inequality and Eigenvalue Estimates of Schr-dinger Operator.- A. McIntosh, Q. Tao: Convolution Singular Integral Operators on Lipschitz Curves.- Z.Y. Wen, L.M.Wu, Y.P. Zhang: Set of Zeros of Harmonic Functions of Two Variables.- C.K. Yuan: On the Structures of Locally Compact Groups Admitting Inner Invariant Means.
|
You may like...
Relocating the History of Science…
Theodore Arabatzis, Jurgen Renn, …
Hardcover
R4,146
Discovery Miles 41 460
Research in History and Philosophy of…
Maria Zack, David Waszek
Hardcover
R3,664
Discovery Miles 36 640
|