![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
The analysis ofwhat might be called "dynamic nonlinearity" in time series has its roots in the pioneering work ofBrillinger (1965) - who first pointed out how the bispectrum and higher order polyspectra could, in principle, be used to test for nonlinear serial dependence - and in Subba Rao and Gabr (1980) and Hinich (1982) who each showed how Brillinger's insight could be translated into a statistical test. Hinich's test, because ittakes advantage ofthe large sample statisticalpropertiesofthe bispectral estimates became the first usable statistical test for nonlinear serial dependence. We are forever grateful to Mel Hinich for getting us involved at that time in this fascinating and fruitful endeavor. With help from Mel (sometimes as amentor, sometimes as acollaborator) we developed and applied this bispectral test in the ensuing period. The first application ofthe test was to daily stock returns {Hinich and Patterson (1982, 1985)} yielding the important discovery of substantial nonlinear serial dependence in returns, over and above the weak linear serial dependence that had been previously observed. The original manuscript met with resistance from finance journals, no doubt because finance academics were reluctant to recognize the importance of distinguishing between serial correlation and nonlinear serial dependence. In Ashley, Patterson and Hinich (1986) we examined the power and sizeofthe test in finite samples.
The analysis ofwhat might be called "dynamic nonlinearity" in time series has its roots in the pioneering work ofBrillinger (1965) - who first pointed out how the bispectrum and higher order polyspectra could, in principle, be used to test for nonlinear serial dependence - and in Subba Rao and Gabr (1980) and Hinich (1982) who each showed how Brillinger's insight could be translated into a statistical test. Hinich's test, because ittakes advantage ofthe large sample statisticalpropertiesofthe bispectral estimates became the first usable statistical test for nonlinear serial dependence. We are forever grateful to Mel Hinich for getting us involved at that time in this fascinating and fruitful endeavor. With help from Mel (sometimes as amentor,sometimes as acollaborator) we developed and applied this bispectral test in the ensuing period. The first application ofthe test was to daily stock returns {Hinich and Patterson (1982, 1985)} yielding the important discovery of substantial nonlinear serial dependence in returns, over and above the weak linear serial dependence that had been previously observed. The original manuscript met with resistance from finance journals, no doubt because finance academics were reluctant to recognize the importance of distinguishing between serial correlation and nonlinear serial dependence. In Ashley, Patterson and Hinich (1986) we examined the power and sizeofthe test in finite samples.
|
You may like...
Tidal Energy Systems - Design…
Vikas Khare, Cheshta Khare, …
Paperback
Chronic Kidney Disease - A practical…
Meguid El Nahas, Adeera Levin
Paperback
R2,591
Discovery Miles 25 910
Coeliac Disease and Gluten-Related…
Annalisa Schieptti, David S. Sanders
Paperback
R3,286
Discovery Miles 32 860
IgE Antibodies: Generation and Function
Juan J Lafaille, Maria A Curotto De Lafaille
Hardcover
R3,246
Discovery Miles 32 460
|