Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 17 of 17 matches in All Departments
Data mining deals with finding patterns in data that are by
user-definition, interesting and valid. It is an interdisciplinary
area involving databases, machine learning, pattern recognition,
statistics, visualization and others. Independently, data mining and decision support are well-developed research areas, but until now there has been no systematic attempt to integrate them. Data Mining and Decision Support: Integration and Collaboration, written by leading researchers in the field, presents a conceptual framework, plus the methods and tools for integrating the two disciplines and for applying this technology to business problems in a collaborative setting.
Despite its explosive growth over the last decade, the Web remains essentially a tool to allow humans to access information. Semantic Web technologies like RDF, OWL and other W3C standards aim to extend the Web's capability through increased availability of machine-processable information. Davies, Grobelnik and Mladenic have grouped contributions from renowned researchers into four parts: technology; integration aspects of knowledge management; knowledge discovery and human language technologies; and case studies. Together, they offer a concise vision of semantic knowledge management, ranging from knowledge acquisition to ontology management to knowledge integration, and their applications in domains such as telecommunications, social networks and legal information processing. This book is an excellent combination of fundamental research, tools and applications in Semantic Web technologies. It serves the fundamental interests of researchers and developers in this field in both academia and industry who need to track Web technology developments and to understand their business implications.
There is generalagreementthat the quality of Machine Learning and Kno- edgeDiscoveryoutputstronglydependsnotonlyonthequalityofsourcedata andsophisticationoflearningalgorithms, butalsoonadditional, task/domain speci?c input provided by domain experts for the particular session. There is however less agreement on whether, when and how such input can and should e?ectively be formalized and reused as explicit prior knowledge. In the ?rst ofthe two parts into which the book is divided, we aimed to - vestigate current developments and new insights on learning techniques that exploit prior knowledge and on promising application areas. With respect to application areas, experiments on bio-informatics / medical and Web data environments are described. This part comprises a selection of extended c- tributionstothe workshopPrior Conceptual Knowledge inMachine Learning and Knowledge Discovery (PriCKL), held at ECML/PKDD 2007 18th - ropean Conference on Machine Learning and 11th European Conference on PrinciplesandPracticeofKnowledgeDiscoveryinDatabases).Theworkshop is part of the activities of the "SEVENPRO - Semantic Virtual Engineering for Product Design" project of the European 6th Framework Programme. The second part of the book has been motivated by the speci?cation of Web 2.0. We observe Web 2.0 as a powerful means of promoting the Web as a social medium, stimulating interpersonal communication and fostering the sharing of content, information, semantics and knowledge among people. Chapters are authored by participants to the workshop Web Mining 2.0, heldatECML/PKDD2007.Theworkshophostedresearchontheroleofweb mininginandfortheWeb2.0.Itispartoftheactivitiesoftheworkinggroups "UbiquitousData-InteractionandDataCollection"and"HumanComputer Interaction and Cognitive Modelling" of the Coordination Action "KDubiq - Knowledge Discovery in Ubiquitous Environments" of the European 6th Framework Programme.
This book constitutes the thoroughly refereed post-proceedings of the satellite events of the 9th International Conference on the Semantic Web, ESWC 2012, held in Heraklion, Crete, Greece, in May 2012. This volume contains 49 full papers and 13 short papers describing the posters and demonstrations. (SUGGESTION/ HELP needed).
There is generalagreementthat the quality of Machine Learning and Kno- edgeDiscoveryoutputstronglydependsnotonlyonthequalityofsourcedata andsophisticationoflearningalgorithms,butalsoonadditional,task/domain speci?c input provided by domain experts for the particular session. There is however less agreement on whether, when and how such input can and should e?ectively be formalized and reused as explicit prior knowledge. In the ?rst ofthe two parts into which the book is divided, we aimed to - vestigate current developments and new insights on learning techniques that exploit prior knowledge and on promising application areas. With respect to application areas, experiments on bio-informatics / medical and Web data environments are described. This part comprises a selection of extended c- tributionstothe workshopPrior Conceptual Knowledge inMachine Learning and Knowledge Discovery (PriCKL), held at ECML/PKDD 2007 18th - ropean Conference on Machine Learning and 11th European Conference on PrinciplesandPracticeofKnowledgeDiscoveryinDatabases).Theworkshop is part of the activities of the "SEVENPRO - Semantic Virtual Engineering for Product Design" project of the European 6th Framework Programme. The second part of the book has been motivated by the speci?cation of Web 2.0. We observe Web 2.0 as a powerful means of promoting the Web as a social medium, stimulating interpersonal communication and fostering the sharing of content, information, semantics and knowledge among people. Chapters are authored by participants to the workshop Web Mining 2.0, heldatECML/PKDD2007.Theworkshophostedresearchontheroleofweb mininginandfortheWeb2.0.Itispartoftheactivitiesoftheworkinggroups "UbiquitousData-InteractionandDataCollection"and"HumanComputer Interaction and Cognitive Modelling" of the Coordination Action "KDubiq - Knowledge Discovery in Ubiquitous Environments" of the European 6th Framework Programme.
Data mining deals with finding patterns in data that are by
user-definition, interesting and valid. It is an interdisciplinary
area involving databases, machine learning, pattern recognition,
statistics, visualization and others. Independently, data mining and decision support are well-developed research areas, but until now there has been no systematic attempt to integrate them. Data Mining and Decision Support: Integration and Collaboration, written by leading researchers in the field, presents a conceptual framework, plus the methods and tools for integrating the two disciplines and for applying this technology to business problems in a collaborative setting.
Despite its explosive growth over the last decade, the Web remains essentially a tool to allow humans to access information. Semantic Web technologies like RDF, OWL and other W3C standards aim to extend the Web's capability through increased availability of machine-processable information. Davies, Grobelnik and Mladenic have grouped contributions from renowned researchers into four parts: technology; integration aspects of knowledge management; knowledge discovery and human language technologies; and case studies. Together, they offer a concise vision of semantic knowledge management, ranging from knowledge acquisition to ontology management to knowledge integration, and their applications in domains such as telecommunications, social networks and legal information processing. This book is an excellent combination of fundamental research, tools and applications in Semantic Web technologies. It serves the fundamental interests of researchers and developers in this field in both academia and industry who need to track Web technology developments and to understand their business implications.
This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2009, held in Bled, Slovenia, in September 2009. The 106 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 422 paper submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.
This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2009, held in Bled, Slovenia, in September 2009. The 106 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 422 paper submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.
This book constitutes the refereed proceedings of the Workshop on Web Mining, WebMine 2006, held in Berlin, Germany, September 2006. Topics included are data mining based on analysis of bloggers and tagging, web mining, XML mining and further techniques of knowledge discovery. The book is especially valuable for those interested in the aspects of Web 2.0 and its inherent dynamic and diversity of user-generated content.
This book constitutes the refereed proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2007, held in Warsaw, Poland, in September 2007, co-located with ECML 2007, the 18th European Conference on Machine Learning. The 28 revised full papers and 35 revised short papers presented together with abstracts of 4 invited talks were carefully reviewed and selected from 592 papers submitted to both, ECML and PKDD. The papers present original results on leading-edge subjects of knowledge discovery from conventional and complex data and address all current issues in the area.
This book constitutes the refereed proceedings of the 18th European Conference on Machine Learning, ECML 2007, held in Warsaw, Poland, September 17-21, 2007, jointly with PKDD 2007. The 41 revised full papers and 37 revised short papers presented together with abstracts of 4 invited talks were carefully reviewed and selected from 592 abstracts submitted to both, ECML and PKDD. The papers present a wealth of new results in the area and address all current issues in machine learning.
This book constitutes the thoroughly refereed and extended post-proceedings of the joint European Web Mining Forum, EWMF 2005, and the International Workshop on Knowledge Discovery and Ontologies, KDO 2005, held in association with ECML/PKDD in Porto, Portugal in October 2005. The 10 revised full papers presented together with one invited paper and one particularly fitting contribution from KDO 2004 were carefully selected for inclusion in the book.
In the last years, research on Web mining has reached maturity and has broadened in scope. Two different but interrelated research threads have emerged, based on the dual nature of the Web: - The Web is a practically in?nite collection of documents: The acquisition and - ploitation of information from these documents asks for intelligent techniques for information categorization, extraction and search, as well as for adaptivity to the interests and background of the organization or person that looks for information. - The Web is a venue for doing business electronically: It is a venue for interaction, information acquisition and service exploitation used by public authorities, n- governmental organizations, communities of interest and private persons. When observed as a venue for the achievement of business goals, a Web presence should be aligned to the objectives of its owner and the requirements of its users. This raises the demand for understandingWeb usage, combining it with other sources of knowledge inside an organization, and deriving lines of action. ThebirthoftheSemanticWebatthebeginningofthedecadeledtoacoercionofthetwo threadsintwoaspects: (i)theextractionofsemanticsfromtheWebtobuildtheSemantic Web;and(ii)theexploitationofthesesemanticstobettersupportinformationacquisition and to enhance the interaction for business and non-business purposes. Semantic Web mining encompasses both aspects from the viewpoint of knowledge discovery
The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic.The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio-) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory; active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.
The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic.The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio-) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory; active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.
This book constitutes the thoroughly refereed post-conference proceedings of the Satellite Events of the 13th European Conference on the Semantic Web, ESWC 2016, held in Heraklion, Greece, in May/June 2016. The volume contains 16 full papers and 38 poster and demonstration papers, carefully selected from 12 workshops focusing on specific research issues related to the Semantic Web.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|