Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 61 matches in All Departments
This volume reflects the contributions stemming from the conference Analytic and Combinatorial Number Theory: The Legacy of Ramanujan which took place at the University of Illinois at Urbana-Champaign on June 6-9, 2019. The conference included 26 plenary talks, 71 contributed talks, and 170 participants. As was the case for the conference, this book is in honor of Bruce C Berndt and in celebration of his mathematics and his 80th birthday.Along with a number of papers previously appearing in Special Issues of the International Journal of Number Theory, the book collects together a few more papers, a biography of Bruce by Atul Dixit and Ae Ja Yee, a preface by George Andrews, a gallery of photos from the conference, a number of speeches from the conference banquet, the conference poster, a list of Bruce's publications at the time this volume was created, and a list of the talks from the conference.
Unlike some other reproductions of classic texts (1) We have not used OCR(Optical Character Recognition), as this leads to bad quality books with introduced typos. (2) In books where there are images such as portraits, maps, sketches etc We have endeavoured to keep the quality of these images, so they represent accurately the original artefact. Although occasionally there may be certain imperfections with these old texts, we feel they deserve to be made available for future generations to enjoy.
Gathered from the 2016 Gainesville Number Theory Conference honoring Krishna Alladi on his 60th birthday, these proceedings present recent research in number theory. Extensive and detailed, this volume features 40 articles by leading researchers on topics in analytic number theory, probabilistic number theory, irrationality and transcendence, Diophantine analysis, partitions, basic hypergeometric series, and modular forms. Readers will also find detailed discussions of several aspects of the path-breaking work of Srinivasa Ramanujan and its influence on current research. Many of the papers were motivated by Alladi's own research on partitions and q-series as well as his earlier work in number theory. Alladi is well known for his contributions in number theory and mathematics. His research interests include combinatorics, discrete mathematics, sieve methods, probabilistic and analytic number theory, Diophantine approximations, partitions and q-series identities. Graduate students and researchers will find this volume a valuable resource on new developments in various aspects of number theory.
In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. This fifth and final installment of the authors' examination of Ramanujan's lost notebook focuses on the mock theta functions first introduced in Ramanujan's famous Last Letter. This volume proves all of the assertions about mock theta functions in the lost notebook and in the Last Letter, particularly the celebrated mock theta conjectures. Other topics feature Ramanujan's many elegant Euler products and the remaining entries on continued fractions not discussed in the preceding volumes. Review from the second volume:"Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited."- MathSciNet Review from the first volume:"Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete."- Gazette of the Australian Mathematical Society
In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated "Ramanujan's lost notebook." The "lost notebook" contains considerable material on mock theta functions and so undoubtedly emanates from the last year of Ramanujan's life. It should be emphasized that the material on mock theta functions is perhaps Ramanujan's deepest work.
From July 31 through August 3,1997, the Pennsylvania State University hosted the Topics in Number Theory Conference. The conference was organized by Ken Ono and myself. By writing the preface, I am afforded the opportunity to express my gratitude to Ken for beng the inspiring and driving force behind the whole conference. Without his energy, enthusiasm and skill the entire event would never have occurred. We are extremely grateful to the sponsors of the conference: The National Sci ence Foundation, The Penn State Conference Center and the Penn State Depart ment of Mathematics. The object in this conference was to provide a variety of presentations giving a current picture of recent, significant work in number theory. There were eight plenary lectures: H. Darmon (McGill University), "Non-vanishing of L-functions and their derivatives modulo p. " A. Granville (University of Georgia), "Mean values of multiplicative functions. " C. Pomerance (University of Georgia), "Recent results in primality testing. " C. Skinner (Princeton University), "Deformations of Galois representations. " R. Stanley (Massachusetts Institute of Technology), "Some interesting hyperplane arrangements. " F. Rodriguez Villegas (Princeton University), "Modular Mahler measures. " T. Wooley (University of Michigan), "Diophantine problems in many variables: The role of additive number theory. " D. Zeilberger (Temple University), "Reverse engineering in combinatorics and number theory. " The papers in this volume provide an accurate picture of many of the topics presented at the conference including contributions from four of the plenary lectures."
This is a critical study of Friel's entire oeuvre, relating his work to the problems of subjectivity, representation, history and the body, with a view to offering some placement of Friel in relation to both postmodernism and traditional humanism. Central to the study is Friel's concept of "translation", whereby he offers us the tension of shaping the new through a "translation" or reformulation of the old. The book includes discussion of Friel's play "Wonderful Tennessee".
In the library at Trinity College, Cambridge in 1976, George Andrews of Pennsylvania State University discovered a sheaf of pages in the handwriting of Srinivasa Ramanujan. Soon designated as "Ramanujan's Lost Notebook," it contains considerable material on mock theta functions and undoubtedly dates from the last year of Ramanujan's life. In this book, the notebook is presented with additional material and expert commentary.
In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. This volume is the third of five volumes that the authors plan to write on Ramanujan's lost notebook and other manuscripts and fragments found in The Lost Notebook and Other Unpublished Papers, published by Narosa in 1988. The ordinary partition function p(n) is the focus of this third volume. In particular, ranks, cranks, and congruences for p(n) are in the spotlight. Other topics include the Ramanujan tau-function, the Rogers-Ramanujan functions, highly composite numbers, and sums of powers of theta functions. Review from the second volume: "Fans of Ramanujan's mathematics are sure to be delighted by
this book. While some of the content is taken directly from
published papers, most chapters contain new material and some
previously published proofs have been improved. Many entries are
just begging for further study and will undoubtedly be inspiring
research for decades to come. The next installment in this series
is eagerly awaited." Review from the first volume: "Andrews and Berndt are to be congratulated on the job they are
doing. This is the first step...on the way to an understanding of
the work of the genius Ramanujan. It should act as an inspiration
to future generations of mathematicians to tackle a job that will
never be complete."
Historically, interventions designed to impact the lives of disabled people were predicated upon deficits-based models of disability. This began to change with the introduction of World Health Organization (WHO) frameworks, particularly the International Classification of Function (ICF), that emphasized that disability could only be understood in the context of interactions among health, environmental factors, and personal factors and by examining the impact of such factors on a person's activities and participation. The ICF identified personal factors as among the elements of a social-ecological model of disability but did not provide an extensive taxonomy of what constitutes such factors. Understanding Disability examines personal factors that come from the field of positive psychology and, as such, to begin to identify and build strengths-based approaches to promoting the full participation, dignity, and well-being of disabled people.
This collection of essays explores the role played by imaginative writing in the Scottish Enlightenment and its interaction with the values and activities of that movement. Across a broad range of areas via specially commissioned essays by experts in each field, the volume examines the reciprocal traffic between the groundbreaking intellectual project of eighteenth-century Scotland and the imaginative literature of the period, demonstrating that the innovations made by the Scottish literati laid the foundations for developments in imaginative writing in Scotland and further afield. In doing so, it provide a context for the widespread revaluation of the literary culture of the Scottish Enlightenment and the part that culture played in the project of Enlightenment.
This book seeks to not only articulate a vision for the profession through Standards for Teacher Educators but also provide a historical perspective of and explore the issues surrounding these standards. To accomplish this, the book establishes the history of teacher education as a discipline, defines who is a teacher educator, and provides a historical foundation for these standards. The reader is then presented with a set of mini-chapters designed to conceptualize a vision for teacher educators through each of the nine standards. Featuring voices of eductors in diverse fields, the third section expands thinking about the standards and how they may or may not apply to others. The final section provides viewpoints on Standards for Teacher Educators and the potential impact of such standards on the profession.
The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takacs. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; "The 8th Conference on Lattice Path Combinatorics and Applications" provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.
The theory of integer partitions is a subject of enduring interest. A major research area in its own right, it has found numerous applications, and celebrated results such as the Rogers-Ramanujan identities make it a topic filled with the true romance of mathematics. The aim in this introductory textbook is to provide an accessible and wide ranging introduction to partitions, without requiring anything more of the reader than some familiarity with polynomials and infinite series. Many exercises are included, together with some solutions and helpful hints. The book has a short introduction followed by an initial chapter introducing Euler's famous theorem on partitions with odd parts and partitions with distinct parts. This is followed by chapters titled: Ferrers Graphs, The Rogers-Ramanujan Identities, Generating Functions, Formulas for Partition Functions, Gaussian Polynomials, Durfee Squares, Euler Refined, Plane Partitions, Growing Ferrers Boards, and Musings.
Gathered from the 2016 Gainesville Number Theory Conference honoring Krishna Alladi on his 60th birthday, these proceedings present recent research in number theory. Extensive and detailed, this volume features 40 articles by leading researchers on topics in analytic number theory, probabilistic number theory, irrationality and transcendence, Diophantine analysis, partitions, basic hypergeometric series, and modular forms. Readers will also find detailed discussions of several aspects of the path-breaking work of Srinivasa Ramanujan and its influence on current research. Many of the papers were motivated by Alladi's own research on partitions and q-series as well as his earlier work in number theory. Alladi is well known for his contributions in number theory and mathematics. His research interests include combinatorics, discrete mathematics, sieve methods, probabilistic and analytic number theory, Diophantine approximations, partitions and q-series identities. Graduate students and researchers will find this volume a valuable resource on new developments in various aspects of number theory.
In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. This fifth and final installment of the authors' examination of Ramanujan's lost notebook focuses on the mock theta functions first introduced in Ramanujan's famous Last Letter. This volume proves all of the assertions about mock theta functions in the lost notebook and in the Last Letter, particularly the celebrated mock theta conjectures. Other topics feature Ramanujan's many elegant Euler products and the remaining entries on continued fractions not discussed in the preceding volumes. Review from the second volume:"Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited."- MathSciNet Review from the first volume:"Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete."- Gazette of the Australian Mathematical Society
From July 31 through August 3,1997, the Pennsylvania State University hosted the Topics in Number Theory Conference. The conference was organized by Ken Ono and myself. By writing the preface, I am afforded the opportunity to express my gratitude to Ken for beng the inspiring and driving force behind the whole conference. Without his energy, enthusiasm and skill the entire event would never have occurred. We are extremely grateful to the sponsors of the conference: The National Sci ence Foundation, The Penn State Conference Center and the Penn State Depart ment of Mathematics. The object in this conference was to provide a variety of presentations giving a current picture of recent, significant work in number theory. There were eight plenary lectures: H. Darmon (McGill University), "Non-vanishing of L-functions and their derivatives modulo p. " A. Granville (University of Georgia), "Mean values of multiplicative functions. " C. Pomerance (University of Georgia), "Recent results in primality testing. " C. Skinner (Princeton University), "Deformations of Galois representations. " R. Stanley (Massachusetts Institute of Technology), "Some interesting hyperplane arrangements. " F. Rodriguez Villegas (Princeton University), "Modular Mahler measures. " T. Wooley (University of Michigan), "Diophantine problems in many variables: The role of additive number theory. " D. Zeilberger (Temple University), "Reverse engineering in combinatorics and number theory. " The papers in this volume provide an accurate picture of many of the topics presented at the conference including contributions from four of the plenary lectures."
In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated "Ramanujan's lost notebook." The "lost notebook" contains considerable material on mock theta functions and so undoubtedly emanates from the last year of Ramanujan's life. It should be emphasized that the material on mock theta functions is perhaps Ramanujan's deepest work.
In the library at Trinity College, Cambridge in 1976, George Andrews of Pennsylvania State University discovered a sheaf of pages in the handwriting of Srinivasa Ramanujan. Soon designated as "Ramanujan 's Lost Notebook," it contains considerable material on mock theta functions and undoubtedly dates from the last year of Ramanujan 's life. In this book, the notebook is presented with additional material and expert commentary.
The theory of integer partitions is a subject of enduring interest. A major research area in its own right, it has found numerous applications, and celebrated results such as the Rogers-Ramanujan identities make it a topic filled with the true romance of mathematics. The aim in this introductory textbook is to provide an accessible and wide ranging introduction to partitions, without requiring anything more of the reader than some familiarity with polynomials and infinite series. Many exercises are included, together with some solutions and helpful hints. The book has a short introduction followed by an initial chapter introducing Euler's famous theorem on partitions with odd parts and partitions with distinct parts. This is followed by chapters titled: Ferrers Graphs, The Rogers-Ramanujan Identities, Generating Functions, Formulas for Partition Functions, Gaussian Polynomials, Durfee Squares, Euler Refined, Plane Partitions, Growing Ferrers Boards, and Musings.
Highly Commended at the BMA Medical Book Awards 2015 Mann s Pharmacovigilance is the definitive reference for the science of detection, assessment, understanding and prevention of the adverse effects of medicines, including vaccines and biologics. Pharmacovigilance is increasingly important in improving drug safety for patients and reducing risk within the practice of pharmaceutical medicine. This new third edition covers the regulatory basis and the practice of pharmacovigilance and spontaneous adverse event reporting throughout the world. It examines signal detection and analysis, including the use of population-based databases and pharmacoepidemiological methodologies to proactively monitor for and assess safety signals. It includes chapters on drug safety practice in specific organ classes, special populations and special products, and new developments in the field. From an international team of expert editors and contributors, Mann s Pharmacovigilance is a reference for everyone working within pharmaceutical companies, contract research organisations and medicine regulatory agencies, and for all researchers and students of pharmaceutical medicine. The book has been renamed in honor of Professor Ronald Mann, whose vision and leadership brought the first two editions into being, and who dedicated his long career to improving the safety and safe use of medicines. |
You may like...
|