![]() |
![]() |
Your cart is empty |
||
Showing 1 - 24 of 24 matches in All Departments
Groups St Andrews 2009 was held in the University of Bath in August 2009 and this first volume of a two-volume book contains selected papers from the international conference. Five main lecture courses were given at the conference, and articles based on their lectures form a substantial part of the proceedings. This volume contains the contributions by Gerhard Hiss (RWTH Aachen) and Volodymyr Nekrashevych (Texas A&M). Apart from the main speakers, refereed survey and research articles were contributed by other conference participants. Arranged in alphabetical order, these articles cover a wide spectrum of modern group theory. The regular proceedings of Groups St Andrews conferences have provided snapshots of the state of research in group theory throughout the past 30 years. Earlier volumes have had a major impact on the development of group theory and it is anticipated that this volume will be equally important.
Groups St Andrews 2009 was held in the University of Bath in August 2009 and this second volume of a two-volume book contains selected papers from the international conference. Five main lecture courses were given at the conference, and articles based on their lectures form a substantial part of the proceedings. This volume contains the contributions by Eammon O'Brien (Auckland), Mark Sapir (Vanderbilt) and Dan Segal (Oxford). Apart from the main speakers, refereed survey and research articles were contributed by other conference participants. Arranged in alphabetical order, these articles cover a wide spectrum of modern group theory. The regular proceedings of Groups St Andrews conferences have provided snapshots of the state of research in group theory throughout the past 30 years. Earlier volumes have had a major impact on the development of group theory and it is anticipated that this volume will be equally important.
'Groups St Andrews 2005' was held in the University of St Andrews in August 2005 and this second volume of a two-volume book contains selected papers from the international conference. Four main lecture courses were given at the conference, and articles based on their lectures form a substantial part of the Proceedings. This volume contains the contributions by John Meakin (Lincoln, Nebraska) and Akos Seress (Ohio State). Apart from the main speakers, refereed survey and research articles were contributed by other conference participants. Arranged in alphabetical order, these articles cover a wide spectrum of modern group theory. The regular Proceedings of Groups St Andrews conferences have provided snapshots of the state of research in group theory throughout the past 25 years. Earlier volumes have had a major impact on the development of group theory and it is anticipated that this volume will be equally important.
This two-volume set contains selected papers from the conference Groups St. Andrews 2001 in Oxford. Contributed by leading researchers, the articles cover a wide spectrum of modern group theory. Contributions based on lecture courses given by five main speakers are included with refereed survey and research articles.
This two-volume set contains selected papers from the conference Groups St. Andrews 2001 in Oxford. Contributed by leading researchers, the articles cover a wide spectrum of modern group theory. Contributions based on lecture courses given by five main speakers are included with refereed survey and research articles. The Groups St. Andrews proceedings volumes represent a view of the state of the art in group theory and often play an important role in future developments in the subject.
This two-volume book contains selected papers from the international conference 'Groups St Andrews 1997 in Bath'. The articles cover a wide spectrum of modern group theory. There are articles based on lecture courses given by five main speakers together with refereed survey and research articles contributed by other conference participants. Proceedings of earlier 'Groups St Andrews' conferences have had a major impact on the development of group theory and these volumes should be equally important.
This two-volume book contains selected papers from the international conference 'Groups St Andrews 1997 in Bath'. The articles cover a wide spectrum of modern group theory. There are articles based on lecture courses given by five main speakers together with refereed survey and research articles contributed by other conference participants. Proceedings of earlier 'Groups St Andrews' conferences have had a major impact on the development of group theory and these volumes should be equally important.
This two-volume book contains selected papers from the international conference 'Groups 1993 Galway/St Andrews' which was held at University College Galway in August 1993. The wealth and diversity of group theory is represented in these two volumes. Five main lecture courses were given at the conference. These were 'Geometry, Steinberg representations and complexity' by J. L. Alperin (Chicago), 'Rickard equivalences and block theory' by M. Broue (ENS, Paris), 'Cohomological finiteness conditions' by P. H. Kropholler (QMW, London), 'Counting finite index subgroups' by A. Lubotzky (Hebrew University, Jerusalem), 'Lie methods in group theory' by E. I. Zel'manov (University of Wisconsin at Madison). Articles based on their lectures, in one case co-authored, form a substantial part of the Proceedings. Another main feature of the conference was a GAP workshop jointly run by J. Neubuser and M. Schoenert (RWTH, Aachen). Two articles by Professor Neubuser, one co-authored, appear in the Proceedings. The other articles in the two volumes comprise both refereed survey and research articles contributed by other conference participants. As with the Proceedings of the earlier 'Groups-St Andrews' conferences it is hoped that the articles in these Proceedings will, with their many references, prove valuable both to experienced researchers and also to new postgraduates interested in group theory.
This two-volume book contains selected papers from the international conference 'Groups 1993 Galway/St Andrews' which was held at University College, Galway in August 1993. The wealth and diversity of group theory is represented in these two volumes. Five main lecture courses were given at the conference. These were 'Geometry, Steinberg representations and complexity' by J. L. Alperin (Chicago), 'Rickard equivalences and block theory' by M. Broue (ENS, Paris), 'Cohomological finiteness conditions', by P. H. Kropholler (Queen Mary and Westfield College, London), 'Counting finite index subgroups', by A. Lubotzky (Hebrew University, Jerusalem), 'Lie methods in group theory' by E. I. Zel'manov (University of Wisconsin at Madison). Articles based on their lectures, in one case co-authored, form a substantial part of the Proceedings. Another main feature of the conference was a GAP workshop jointly run by J. Neubuser and M. Schoenert (Rheinisch-Westfalische Technische Hochschole, Aachen). Two articles by Professor Neubuser, one co-authored, appear in the Proceedings. The other articles in the two volumes comprise both refereed survey and research articles contributed by other conference participants. As with the Proceedings of the earlier 'Groups-St Andrews' conferences it is hoped that the articles in these Proceedings will, with their many references, prove valuable both to experienced researchers and also to new postgraduates interested in group theory.
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers: this will take the form of a tutorial on the use of the "LinearAlgebra" package in MAPLE 7 and will deal with all the aspects of linear algebra developed within the book.
These volumes contain selected papers presented at the international conference on group theory held in St Andrews in 1989. The themes of the conference were combinatorial and computational group theory; four leading group theorists (J. A. Green, N. D. Gupta, O. H. Kegel and J. G. Thompson) gave courses whose content is reproduced here. Also included are refereed papers presented at the meeting. The many articles with their wealth of references demonstrate the richness and vitality of modern group theory and its varied connections with other areas of mathematics. These will be essential references for research and postgraduate mathematicians whose work involves group theory.
These volumes contain selected papers presented at the international conference on group theory held in St Andrews in 1989. The themes of the conference were combinatorial and computational group theory; four leading group theorists (J. A. Green, N. D. Gupta, O. H. Kegel and J. G. Thompson) gave courses whose content is reproduced here. Also included are refereed papers presented at the meeting. The many articles with their wealth of references demonstrate the richness and vitality of modern group theory and its varied connections with other areas of mathematics. These will be essential references for research and postgraduate mathematicians whose work involves group theory.
This book contains selected papers from the international conference Groups--St Andrews 1985. It provides a comprehensive picture of current progress and research in group theory. Five leading group theorists, Bachmuth, Baumslag, Neumann, Roseblade and Tits have presented survey articles based on short lecture courses given at the conference and the rest of the book comprises both survey and research articles contributed by other conference speakers. The many articles with their wealth of references demonstrate the richness and vitality of modern group theory and its many connections with other areas of mathematics. The book will prove invaluable to both experienced researchers and new postgraduates whose interests involve group theory.
Problem-solving is an art central to understanding and ability in mathematics. With this series of books, the authors have provided a selection of worked examples, problems with complete solutions and test papers designed to be used with or instead of standard textbooks on algebra. For the convenience of the reader, a key explaining how the present books may be used in conjunction with some of the major textbooks is included. Each volume is divided into sections that begin with some notes on notation and prerequisites. The majority of the material is aimed at the students of average ability but some sections contain more challenging problems. By working through the books, the student will gain a deeper understanding of the fundamental concepts involved, and practice in the formulation, and so solution, of other problems. Books later in the series cover material at a more advanced level than the earlier titles, although each is, within its own limits, self-contained.
Problem-solving is an art central to understanding and ability in mathematics. With this series of books, the authors have provided a selection of worked examples, problems with complete solutions and test papers designed to be used with or instead of standard textbooks on algebra. For the convenience of the reader, a key explaining how the present books may be used in conjunction with some of the major textbooks is included. Each volume is divided into sections that begin with some notes on notation and prerequisites. The majority of the material is aimed at the students of average ability but some sections contain more challenging problems. By working through the books, the student will gain a deeper understanding of the fundamental concepts involved, and practice in the formulation, and so solution, of other problems. Books later in the series cover material at a more advanced level than the earlier titles, although each is, within its own limits, self-contained.
Problem solving is an art that is central to understanding and ability in mathematics. With this series of books the authors have provided a selection of problems with complete solutions and test papers designed to be used with or instead of standard textbooks on algebra. For the convenience of the reader, a key explaining how the present books may be used in conjunction with some of the major textbooks is included. Each book of problems is divided into chapters that begin with some notes on notation and prerequisites. The majority of the material is aimed at the student of average ability but there are some more challenging problems. By working through the books, the student will gain a deeper understanding of the fundamental concepts involved, and practice in the formulation, and so solution, of other algebraic problems. Later books in the series cover material at a more advanced level than the earlier titles, although each is, within its own limits, self-contained.
Problem solving is an art that is central to understanding and ability in mathematics. With this series of books the authors have provided a selection of problems with complete solutions and test papers designed to be used with or instead of standard textbooks on algebra. For the convenience of the reader, a key explaining how the present books may be used in conjunction with some of the major textbooks is included. Each book of problems is divided into chapters that begin with some notes on notation and prerequisites. The majority of the material is aimed at the student of average ability but there are some more challenging problems. By working through the books, the student will gain a deeper understanding of the fundamental concepts involved, and practice in the formulation, and so solution, of other algebraic problems. Later books in the series cover material at a more advanced level than the earlier titles, although each is, within its own limits, self-contained.
Problem-solving is an art central to understanding and ability in mathematics. With this series of books, the authors have provided a selection of worked examples, problems with complete solutions and test papers designed to be used with or instead of standard textbooks on algebra. For the convenience of the reader, a key explaining how the present books may be used in conjunction with some of the major textbooks is included. Each volume is divided into sections that begin with some notes on notation and prerequisites. The majority of the material is aimed at the students of average ability but some sections contain more challenging problems. By working through the books, the student will gain a deeper understanding of the fundamental concepts involved, and practice in the formulation, and so solution, of other problems. Books later in the series cover material at a more advanced level than the earlier titles, although each is, within its own limits, self-contained.
This book contains selected papers from the international conference 'Groups - St Andrews 1981', which was held at the University of St Andrews in July/August 1981. Its contents reflect the main topics of the conference: combinatorial group theory; infinite groups; general groups, finite or infinite; computational group theory. Four courses, each providing a five-lecture survey, given by J. Neubuser (Aachen), D. J. S. Robinson (Illinois), S. J. Tobin (Galway) and J. Wiengold (Cardiff), have been expanded into articles, forming the first part of the book. The second part consists of surveys and research articles written by other conference participants. More than two-thirds of the book is composed of survey articles providing a remarkably clear and up-to-date picture of those areas of group theory. The articles which comprise this book, together with their extensive bibliographies, will prove an invaluable tool to researchers in group theory, and, in addition, their detailed expositions make them very suitable for relevant postgraduate courses.
Every four years leading researchers gather to survey the latest developments in all aspects of group theory. Initially held in St Andrews, these meetings have become the premier forum for group theory across the whole of the UK. Since 1981, the proceedings of 'Groups St Andrews' have provided a regular snapshot of the state-of-the-art in group theory and helped to shape the direction of research in the field. This volume contains papers from the 2017 meeting held in Birmingham. It includes expository articles from the invited speakers, and further surveys contributed by the participants. Topics include: generation of finite simple groups, block theory, fusion systems, algebraic groups, one-relator groups, geometric group theory, and Beauville groups.
Problem solving is an art that is central to understanding and ability in mathematics. With this series of books the authors have provided a selection of problems with complete solutions and test papers designed to be used with or instead of standard textbooks on algebra. For the convenience of the reader, a key explaining how the present books may be used in conjunction with some of the major textbooks is included. Each book of problems is divided into chapters that begin with some notes on notation and prerequisites. The majority of the material is aimed at the student of average ability but there are some more challenging problems. By working through the books, the student will gain a deeper understanding of the fundamental concepts involved, and practice in the formulation, and so solution, of other algebraic problems. Later books in the series cover material at a more advanced level than the earlier titles, although each is, within its own limits, self-contained.
'Groups St Andrews 2005' was held in the University of St Andrews in August 2005 and this first volume of a two-volume book contains selected papers from the international conference. Four main lecture courses were given at the conference, and articles based on their lectures form a substantial part of the Proceedings. This volume contains the contributions by Peter Cameron (Queen Mary, London) and Rostislav Grogorchuk (Texas A&M, USA). Apart from the main speakers, refereed survey and research articles were contributed by other conference participants. Arranged in alphabetical order, these articles cover a wide spectrum of modern group theory. The regular Proceedings of Groups St Andrews conferences have provided snapshots of the state of research in group theory throughout the past 25 years. Earlier volumes have had a major impact on the development of group theory and it is anticipated that this volume will be equally important.
Every four years, leading researchers gather to survey the latest developments in all aspects of group theory. Since 1981, the proceedings of those meetings have provided a regular snapshot of the state of the art in group theory and helped to shape the direction of research in the field. This volume contains selected papers from the 2013 meeting held in St Andrews. It begins with major articles from each of the four main speakers: Emmanuel Breuillard (Paris-Sud), Martin Liebeck (Imperial College London), Alan Reid (Texas) and Karen Vogtmann (Cornell). These are followed by, in alphabetical order, survey articles contributed by other conference participants, which cover a wide spectrum of modern group theory.
Further Linear Algebra is a natural sequel to the authors' highly acclaimed SUMS volume "Basic Linear Algebra". The more advanced topics covered here take the reader to the very heart of the subject, and include inner product spaces, direct sums of subspaces, the primary decomposition theorem and various canonical forms for matrices. Furthermore, the authors provide a brief introduction to the use of MAPLE in linear algebra calculations, and biographical profiles of eminent mathematicians associated with the subject.An introductory chapter recaps the prerequisites (for those readers unfamiliar with the first volume), and a wide range of worked examples and exercises (with solutions) are strategically placed throughout the text to consolidate understanding.
|
![]() ![]() You may like...
|