0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (6)
  • R5,000 - R10,000 (3)
  • -
Status
Brand

Showing 1 - 9 of 9 matches in All Departments

Scientific Computing in Electrical Engineering - SCEE 2014, Wuppertal, Germany, July 2014 (Paperback, Softcover reprint of the... Scientific Computing in Electrical Engineering - SCEE 2014, Wuppertal, Germany, July 2014 (Paperback, Softcover reprint of the original 1st ed. 2016)
Andreas Bartel, Markus Clemens, Michael Gunther, E. Jan W. Ter Maten
R5,259 Discovery Miles 52 590 Ships in 10 - 15 working days

This book is a collection of selected papers presented at the 10th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in Wuppertal, Germany in 2014. The book is divided into five parts, reflecting the main directions of SCEE 2014: 1. Device Modeling, Electric Circuits and Simulation, 2. Computational Electromagnetics, 3. Coupled Problems, 4. Model Order Reduction, and 5. Uncertainty Quantification. Each part starts with a general introduction followed by the actual papers. The aim of the SCEE 2014 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, with the goal of fostering intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The methodological focus was on model order reduction and uncertainty quantification.

Novel Methods in Computational Finance (Paperback, Softcover reprint of the original 1st ed. 2017): Matthias Ehrhardt, Michael... Novel Methods in Computational Finance (Paperback, Softcover reprint of the original 1st ed. 2017)
Matthias Ehrhardt, Michael Gunther, E. Jan W. Ter Maten
R6,616 Discovery Miles 66 160 Ships in 10 - 15 working days

This book discusses the state-of-the-art and open problems in computational finance. It presents a collection of research outcomes and reviews of the work from the STRIKE project, an FP7 Marie Curie Initial Training Network (ITN) project in which academic partners trained early-stage researchers in close cooperation with a broader range of associated partners, including from the private sector. The aim of the project was to arrive at a deeper understanding of complex (mostly nonlinear) financial models and to develop effective and robust numerical schemes for solving linear and nonlinear problems arising from the mathematical theory of pricing financial derivatives and related financial products. This was accomplished by means of financial modelling, mathematical analysis and numerical simulations, optimal control techniques and validation of models. In recent years the computational complexity of mathematical models employed in financial mathematics has witnessed tremendous growth. Advanced numerical techniques are now essential to the majority of present-day applications in the financial industry. Special attention is devoted to a uniform methodology for both testing the latest achievements and simultaneously educating young PhD students. Most of the mathematical codes are linked into a novel computational finance toolbox, which is provided in MATLAB and PYTHON with an open access license. The book offers a valuable guide for researchers in computational finance and related areas, e.g. energy markets, with an interest in industrial mathematics.

Novel Methods in Computational Finance (Hardcover, 1st ed. 2017): Matthias Ehrhardt, Michael Gunther, E. Jan W. Ter Maten Novel Methods in Computational Finance (Hardcover, 1st ed. 2017)
Matthias Ehrhardt, Michael Gunther, E. Jan W. Ter Maten
R4,936 Discovery Miles 49 360 Ships in 10 - 15 working days

This book discusses the state-of-the-art and open problems in computational finance. It presents a collection of research outcomes and reviews of the work from the STRIKE project, an FP7 Marie Curie Initial Training Network (ITN) project in which academic partners trained early-stage researchers in close cooperation with a broader range of associated partners, including from the private sector. The aim of the project was to arrive at a deeper understanding of complex (mostly nonlinear) financial models and to develop effective and robust numerical schemes for solving linear and nonlinear problems arising from the mathematical theory of pricing financial derivatives and related financial products. This was accomplished by means of financial modelling, mathematical analysis and numerical simulations, optimal control techniques and validation of models. In recent years the computational complexity of mathematical models employed in financial mathematics has witnessed tremendous growth. Advanced numerical techniques are now essential to the majority of present-day applications in the financial industry. Special attention is devoted to a uniform methodology for both testing the latest achievements and simultaneously educating young PhD students. Most of the mathematical codes are linked into a novel computational finance toolbox, which is provided in MATLAB and PYTHON with an open access license. The book offers a valuable guide for researchers in computational finance and related areas, e.g. energy markets, with an interest in industrial mathematics.

Scientific Computing in Electrical Engineering - SCEE 2014, Wuppertal, Germany, July 2014 (Hardcover, 1st ed. 2016): Andreas... Scientific Computing in Electrical Engineering - SCEE 2014, Wuppertal, Germany, July 2014 (Hardcover, 1st ed. 2016)
Andreas Bartel, Markus Clemens, Michael Gunther, E. Jan W. Ter Maten
R5,506 Discovery Miles 55 060 Ships in 10 - 15 working days

This book is a collection of selected papers presented at the 10th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in Wuppertal, Germany in 2014. The book is divided into five parts, reflecting the main directions of SCEE 2014: 1. Device Modeling, Electric Circuits and Simulation, 2. Computational Electromagnetics, 3. Coupled Problems, 4. Model Order Reduction, and 5. Uncertainty Quantification. Each part starts with a general introduction followed by the actual papers. The aim of the SCEE 2014 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, with the goal of fostering intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The methodological focus was on model order reduction and uncertainty quantification.

Scientific Computing in Electrical Engineering - Proceedings of the SCEE-2002 Conference held in Eindhoven (Paperback, 2004):... Scientific Computing in Electrical Engineering - Proceedings of the SCEE-2002 Conference held in Eindhoven (Paperback, 2004)
Wilhelmus H Schilders, E. Jan W. Ter Maten, Stephan H.M.J. Houben
R4,528 Discovery Miles 45 280 Ships in 10 - 15 working days

The fourth international conference on Scientific Computing in Electrical En- gineering (SCEE) was held at the Eindhoven University of Technology, from 23rd to 28th June, 2002. It was sponsored by Philips Research Laborato- ries Eindhoven, the Eindhoven University of Technology, Computer Simula- tion Technology (CST) from Darmstadt, ABB Corporate Research, Thales Netherlands,the European Consortium for Mathematics in Industry (ECMI), the University of Rostock (organiser of SCEE-2000), the European network for Mathematics, Computing and Simulation for Industry (MACSI-net), the Royal Netherlands Academy of Arts and Sciences (KNAW), and the Scien- tific Computing Group of the Eindhoven University of Technology. The Program Committee consisted of: Dr. Alain Bossavit, Electricite de France, Clamart, France. Dr. Uwe Feldmann, Infineon Technologies A.G., Munich, Germany. Prof.Dr. Leszek Demkowicz, University of Texas at Austin, USA. Dr. Michael Gunther, Universitat Karlsruhe, Germany. Prof.Dr. Ulrich Langer, Johannes Kepler Universitat, Linz, Austria. Dr. Jan ter Maten,Philips Research Laboratories Eindhoven, The Nether- lands. Prof.Dr. Ursula van Rienen, Universitat Rostock, Germany. Prof.Dr. Jaijeet Roychowdhury, University of Minnesota, USA. - Prof.Dr. Wil Schilders, Technische Universiteit Eindhoven and Philips Research Laboratories Eindhoven, The Netherlands. - Prof.Dr. Thomas Weiland, Technische Universitat Darmstadt, Germany.

Model Reduction for Circuit Simulation (Paperback, 2011 ed.): Peter Benner, Michael Hinze, E. Jan W. Ter Maten Model Reduction for Circuit Simulation (Paperback, 2011 ed.)
Peter Benner, Michael Hinze, E. Jan W. Ter Maten
R4,497 Discovery Miles 44 970 Ships in 10 - 15 working days

Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the device while requiring a significantly lower simulation time than the full model. With Model Reduction for Circuit Simulation we survey the state of the art in the challenging research field of MOR for ICs, and also address its future research directions. Special emphasis is taken on aspects stemming from miniturisations to the nano scale. Contributions cover complexity reduction using e.g., balanced truncation, Krylov-techniques or POD approaches. For semiconductor applications a focus is on generalising current techniques to differential-algebraic equations, on including design parameters, on preserving stability, and on including nonlinearity by means of piecewise linearisations along solution trajectories (TPWL) and interpolation techniques for nonlinear parts. Furthermore the influence of interconnects and power grids on the physical properties of the device is considered, and also top-down system design approaches in which detailed block descriptions are combined with behavioral models. Further topics consider MOR and the combination of approaches from optimisation and statistics, and the inclusion of PDE models with emphasis on MOR for the resulting partial differential algebraic systems. The methods which currently are being developed have also relevance in other application areas such as mechanical multibody systems, and systems arising in chemistry and to biology. The current number of books in the area of MOR for ICs is very limited, so that this volume helps to fill a gap in providing the state of the art material, and to stimulate further research in this area of MOR. Model Reduction for Circuit Simulation also reflects and documents the vivid interaction between three active research projects in this area, namely the EU-Marie Curie Action ToK project O-MOORE-NICE (members in Belgium, The Netherlands and Germany), the EU-Marie Curie Action RTN-project COMSON (members in The Netherlands, Italy, Germany, and Romania), and the German federal project System reduction in nano-electronics (SyreNe).

Model Reduction for Circuit Simulation (Hardcover, 2011 Ed.): Peter Benner, Michael Hinze, E. Jan W. Ter Maten Model Reduction for Circuit Simulation (Hardcover, 2011 Ed.)
Peter Benner, Michael Hinze, E. Jan W. Ter Maten
R4,529 Discovery Miles 45 290 Ships in 10 - 15 working days

Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the device while requiring a significantly lower simulation time than the full model. With Model Reduction for Circuit Simulation we survey the state of the art in the challenging research field of MOR for ICs, and also address its future research directions. Special emphasis is taken on aspects stemming from miniturisations to the nano scale. Contributions cover complexity reduction using e.g., balanced truncation, Krylov-techniques or POD approaches. For semiconductor applications a focus is on generalising current techniques to differential-algebraic equations, on including design parameters, on preserving stability, and on including nonlinearity by means of piecewise linearisations along solution trajectories (TPWL) and interpolation techniques for nonlinear parts. Furthermore the influence of interconnects and power grids on the physical properties of the device is considered, and also top-down system design approaches in which detailed block descriptions are combined with behavioral models. Further topics consider MOR and the combination of approaches from optimisation and statistics, and the inclusion of PDE models with emphasis on MOR for the resulting partial differential algebraic systems. The methods which currently are being developed have also relevance in other application areas such as mechanical multibody systems, and systems arising in chemistry and to biology. The current number of books in the area of MOR for ICs is very limited, so that this volume helps to fill a gap in providing the state of the art material, and to stimulate further research in this area of MOR. Model Reduction for Circuit Simulation also reflects and documents the vivid interaction between three active research projects in this area, namely the EU-Marie Curie Action ToK project O-MOORE-NICE (members in Belgium, The Netherlands and Germany), the EU-Marie Curie Action RTN-project COMSON (members in The Netherlands, Italy, Germany, and Romania), and the German federal project System reduction in nano-electronics (SyreNe).

Scientific Computing in Electrical Engineering - Proceedings of the SCEE-2002 Conference held in Eindhoven (Hardcover, 2004... Scientific Computing in Electrical Engineering - Proceedings of the SCEE-2002 Conference held in Eindhoven (Hardcover, 2004 ed.)
Wilhelmus H Schilders, E. Jan W. Ter Maten, Stephan H.M.J. Houben
R4,756 Discovery Miles 47 560 Ships in 10 - 15 working days

The fourth international conference on Scientific Computing in Electrical En- gineering (SCEE) was held at the Eindhoven University of Technology, from 23rd to 28th June, 2002. It was sponsored by Philips Research Laborato- ries Eindhoven, the Eindhoven University of Technology, Computer Simula- tion Technology (CST) from Darmstadt, ABB Corporate Research, Thales Netherlands,the European Consortium for Mathematics in Industry (ECMI), the University of Rostock (organiser of SCEE-2000), the European network for Mathematics, Computing and Simulation for Industry (MACSI-net), the Royal Netherlands Academy of Arts and Sciences (KNAW), and the Scien- tific Computing Group of the Eindhoven University of Technology. The Program Committee consisted of: Dr. Alain Bossavit, Electricite de France, Clamart, France. Dr. Uwe Feldmann, Infineon Technologies A.G., Munich, Germany. Prof.Dr. Leszek Demkowicz, University of Texas at Austin, USA. Dr. Michael Gunther, Universitat Karlsruhe, Germany. Prof.Dr. Ulrich Langer, Johannes Kepler Universitat, Linz, Austria. Dr. Jan ter Maten,Philips Research Laboratories Eindhoven, The Nether- lands. Prof.Dr. Ursula van Rienen, Universitat Rostock, Germany. Prof.Dr. Jaijeet Roychowdhury, University of Minnesota, USA. - Prof.Dr. Wil Schilders, Technische Universiteit Eindhoven and Philips Research Laboratories Eindhoven, The Netherlands. - Prof.Dr. Thomas Weiland, Technische Universitat Darmstadt, Germany.

Nanoelectronic Coupled Problems Solutions (Hardcover, 1st ed. 2019): E. Jan W. Ter Maten, Hans-Georg Brachtendorf, Roland... Nanoelectronic Coupled Problems Solutions (Hardcover, 1st ed. 2019)
E. Jan W. Ter Maten, Hans-Georg Brachtendorf, Roland Pulch, Wim Schoenmaker, Herbert De Gersem
R2,837 Discovery Miles 28 370 Ships in 10 - 15 working days

Designs in nanoelectronics often lead to challenging simulation problems and include strong feedback couplings. Industry demands provisions for variability in order to guarantee quality and yield. It also requires the incorporation of higher abstraction levels to allow for system simulation in order to shorten the design cycles, while at the same time preserving accuracy. The methods developed here promote a methodology for circuit-and-system-level modelling and simulation based on best practice rules, which are used to deal with coupled electromagnetic field-circuit-heat problems, as well as coupled electro-thermal-stress problems that emerge in nanoelectronic designs. This book covers: (1) advanced monolithic/multirate/co-simulation techniques, which are combined with envelope/wavelet approaches to create efficient and robust simulation techniques for strongly coupled systems that exploit the different dynamics of sub-systems within multiphysics problems, and which allow designers to predict reliability and ageing; (2) new generalized techniques in Uncertainty Quantification (UQ) for coupled problems to include a variability capability such that robust design and optimization, worst case analysis, and yield estimation with tiny failure probabilities are possible (including large deviations like 6-sigma); (3) enhanced sparse, parametric Model Order Reduction techniques with a posteriori error estimation for coupled problems and for UQ to reduce the complexity of the sub-systems while ensuring that the operational and coupling parameters can still be varied and that the reduced models offer higher abstraction levels that can be efficiently simulated. All the new algorithms produced were implemented, transferred and tested by the EDA vendor MAGWEL. Validation was conducted on industrial designs provided by end-users from the semiconductor industry, who shared their feedback, contributed to the measurements, and supplied both material data and process data. In closing, a thorough comparison to measurements on real devices was made in order to demonstrate the algorithms' industrial applicability.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300
First Dutch Brands Lara Plant Stand…
R55 Discovery Miles 550
Tenet
John David Washington, Robert Pattinson Blu-ray disc  (1)
R54 Discovery Miles 540
Frozen - Blu-Ray + DVD
Blu-ray disc R344 Discovery Miles 3 440
Bestway Beach Ball (51cm)
 (2)
R26 Discovery Miles 260
Cable Guys Controller and Smartphone…
R399 R359 Discovery Miles 3 590
UHU Super Glue Gel (3g)
R33 Discovery Miles 330
Dig & Discover: Dinosaurs - Excavate 2…
Hinkler Pty Ltd Kit R304 R267 Discovery Miles 2 670
The End, So Far
Slipknot CD R498 Discovery Miles 4 980
Shield Mr Fix-It Tubeless Repair Kit
R80 Discovery Miles 800

 

Partners