Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
Application Specific Processors is written for use by engineers who are developing specialized systems (application specific systems). Traditionally, most high performance signal processors have been realized with application specific processors. The explanation is that application specific processors can be tailored to exactly match the (usually very demanding) application requirements. The result is that no processing power' is wasted for unnecessary capabilities and maximum performance is achieved. A disadvantage is that such processors have been expensive to design since each is a unique design that is customized to the specific application. In the last decade, computer-aided design systems have been developed to facilitate the development of application specific integrated circuits. The success of such ASIC CAD systems suggests that it should be possible to streamline the process of application specific processor design. Application Specific Processors consists of eight chapters which provide a mixture of techniques and examples that relate to application specific processing. The inclusion of techniques is expected to suggest additional research and to assist those who are faced with the requirement to implement efficient application specific processors. The examples illustrate the application of the concepts and demonstrate the efficiency that can be achieved via application specific processors. The chapters were written by members and former members of the application specific processing group at the University of Texas at Austin. The first five chapters relate to specific arithmetic which often is the key to achieving high performance in application specific processors. The next two chapters focus on signal processing systems, and the final chapter examines the interconnection of possibly disparate elements to create systems.
This book is the first in a set of forthcoming books focussed on state-of-the-art development in the VLSI Signal Processing area. It is a response to the tremendous research activities taking place in that field. These activities have been driven by two factors: the dramatic increase in demand for high speed signal processing, especially in consumer elec tronics, and the evolving microelectronic technologies. The available technology has always been one of the main factors in determining al gorithms, architectures, and design strategies to be followed. With every new technology, signal processing systems go through many changes in concepts, design methods, and implementation. The goal of this book is to introduce the reader to the main features of VLSI Signal Processing and the ongoing developments in this area. The focus of this book is on: * Current developments in Digital Signal Processing (DSP) pro cessors and architectures - several examples and case studies of existing DSP chips are discussed in Chapter 1. * Features and requirements of image and video signal processing architectures - both applications specific integrated circuits (ASICs) and programmable image processors are studied in Chapter 2. * New market areas for signal processing - especially in consumer electronics such as multimedia, teleconferencing, and movie on demand. * Impact of arithmetic circuitry on the performance of DSP pro cessors - several topics are discussed in Chapter 3 such as: number representation, arithmetic algorithms and circuits, and implementa tion.
Wafer Scale Integration (WSI) is the culmination of the quest for larger integrated circuits. In VLSI chips are developed by fabricating a wafer with hundreds of identical circuits, testing the circuits, dicing the wafer, and packaging the good dice. In contrast in WSI, a wafer is fabricated with several types of circuits (generally referred to as cells), with multiple instances of each cell type, the cells are tested, and good cells are interconnected to realize a system on the wafer. Since most signal lines stay on the wafer, stray capacitance is low, so that high speeds are achieved with low power consumption. For the same technology a WSI implementation may be a factor of five faster, dissipate a factor of ten less power, and require one hundredth to one thousandth the volume. Successful development of WSI involves many overlapping disciplines, ranging from architecture to test design to fabrication (including laser linking and cutting, multiple levels of interconnection, and packaging). This book concentrates on the areas that are unique to WSI and that are as a result not well covered by any of the many books on VLSI design. A unique aspect of WSI is that the finished circuits are so large that there will be defects in some portions of the circuit. Accordingly much attention must be devoted to designing architectures that facilitate fault detection and reconfiguration to of WSI include fabrication circumvent the faults. Other unique aspects technology and packaging.
This is the new edition of the classic book Computer Arithmetic in three volumes published originally in 1990 by IEEE Computer Society Press. As in the original, the book contains many classic papers treating advanced concepts in computer arithmetic, which is very suitable as stand-alone textbooks or complementary materials to textbooks on computer arithmetic for graduate students and research professionals interested in the field.Told in the words of the initial developers, this book conveys the excitement of the creators, and the implementations provide insight into the details necessary to realize real chips. This second volume presents topics on error tolerant arithmetic, digit on-line arithmetic, number systems, and now in this new edition, a topic on implementations of arithmetic operations, all wrapped with an updated overview and a new introduction for each chapter.This volume is part of a 3 volume set:Computer Arithmetic Volume I Computer Arithmetic Volume II Computer Arithmetic Volume IIIThe full set is available for sale in a print-only version.
The book provides many of the basic papers in computer arithmetic. These papers describe the concepts and basic operations (in the words of the original developers) that would be useful to the designers of computers and embedded systems. Although the main focus is on the basic operations of addition, multiplication and division, advanced concepts such as logarithmic arithmetic and the calculations of elementary functions are also covered.This volume is part of a 3 volume set:Computer Arithmetic Volume I Computer Arithmetic Volume II Computer Arithmetic Volume IIIThe full set is available for sale in a print-only version.
Computer Arithmetic Volume III is a compilation of key papers in computer arithmetic on floating-point arithmetic and design. The intent is to show progress, evolution, and novelty in the area of floating-point arithmetic. This field has made extraordinary progress since the initial software routines on mainframe computers have evolved into hardware implementations in processors spanning a wide range of performance. Nevertheless, these papers pave the way to the understanding of modern day processors design where computer arithmetic are supported by floating-point units. The goal of Volume III is to collect the defining document for floating-point arithmetic and many of the key papers on the implementation of both binary and decimal floating-point arithmetic into a single volume. Although fewer than forty papers are included, their reference lists will direct the interested reader to other excellent work that could not be included here.Volume III is specifically oriented to the needs of designers and users of both general-purpose computers and special-purpose digital processors. The book should also be useful to systems engineers, computer architects, and logic designers. It is also intended to serve as a primary text for a course on floating-point arithmetic, as well as a supplementary text for courses in digital arithmetic and high-speed signal processing.This volume is part of a 3 volume set:Computer Arithmetic Volume I Computer Arithmetic Volume II Computer Arithmetic Volume IIIThe full set is available for sale in a print-only version.
This book is about systolic signal processing systems: networks of signal processors with efficient data flow between the processors. It is written for students, engineers, and managers who wish a concise introduction to the key concepts and future directions of systolic processor architectures.
This book is the first in a set of forthcoming books focussed on state-of-the-art development in the VLSI Signal Processing area. It is a response to the tremendous research activities taking place in that field. These activities have been driven by two factors: the dramatic increase in demand for high speed signal processing, especially in consumer elec tronics, and the evolving microelectronic technologies. The available technology has always been one of the main factors in determining al gorithms, architectures, and design strategies to be followed. With every new technology, signal processing systems go through many changes in concepts, design methods, and implementation. The goal of this book is to introduce the reader to the main features of VLSI Signal Processing and the ongoing developments in this area. The focus of this book is on: * Current developments in Digital Signal Processing (DSP) pro cessors and architectures - several examples and case studies of existing DSP chips are discussed in Chapter 1. * Features and requirements of image and video signal processing architectures - both applications specific integrated circuits (ASICs) and programmable image processors are studied in Chapter 2. * New market areas for signal processing - especially in consumer electronics such as multimedia, teleconferencing, and movie on demand. * Impact of arithmetic circuitry on the performance of DSP pro cessors - several topics are discussed in Chapter 3 such as: number representation, arithmetic algorithms and circuits, and implementa tion.
Wafer Scale Integration (WSI) is the culmination of the quest for larger integrated circuits. In VLSI chips are developed by fabricating a wafer with hundreds of identical circuits, testing the circuits, dicing the wafer, and packaging the good dice. In contrast in WSI, a wafer is fabricated with several types of circuits (generally referred to as cells), with multiple instances of each cell type, the cells are tested, and good cells are interconnected to realize a system on the wafer. Since most signal lines stay on the wafer, stray capacitance is low, so that high speeds are achieved with low power consumption. For the same technology a WSI implementation may be a factor of five faster, dissipate a factor of ten less power, and require one hundredth to one thousandth the volume. Successful development of WSI involves many overlapping disciplines, ranging from architecture to test design to fabrication (including laser linking and cutting, multiple levels of interconnection, and packaging). This book concentrates on the areas that are unique to WSI and that are as a result not well covered by any of the many books on VLSI design. A unique aspect of WSI is that the finished circuits are so large that there will be defects in some portions of the circuit. Accordingly much attention must be devoted to designing architectures that facilitate fault detection and reconfiguration to of WSI include fabrication circumvent the faults. Other unique aspects technology and packaging.
Application Specific Processors is written for use by engineers who are developing specialized systems (application specific systems). Traditionally, most high performance signal processors have been realized with application specific processors. The explanation is that application specific processors can be tailored to exactly match the (usually very demanding) application requirements. The result is that no processing power' is wasted for unnecessary capabilities and maximum performance is achieved. A disadvantage is that such processors have been expensive to design since each is a unique design that is customized to the specific application. In the last decade, computer-aided design systems have been developed to facilitate the development of application specific integrated circuits. The success of such ASIC CAD systems suggests that it should be possible to streamline the process of application specific processor design. Application Specific Processors consists of eight chapters which provide a mixture of techniques and examples that relate to application specific processing. The inclusion of techniques is expected to suggest additional research and to assist those who are faced with the requirement to implement efficient application specific processors. The examples illustrate the application of the concepts and demonstrate the efficiency that can be achieved via application specific processors. The chapters were written by members and former members of the application specific processing group at the University of Texas at Austin. The first five chapters relate to specific arithmetic which often is the key to achieving high performance in application specific processors. The next two chapters focus on signal processing systems, and the final chapter examines the interconnection of possibly disparate elements to create systems.
Memristors are a new class of circuit element with the ability to change their resistance value while retaining memory of their current and past resistances. Their small form factor, high density, and fast switching times have sparked research into their applications in modern memory hierarchies. However, these new components pose system design challenges, as well as opportunities. System Design with Memristor Technologies explores design solutions for memristors, covering research and development trends in memristor technology, fabrication, modelling, and applications, and the design and implementation of arithmetic units using memristors. The book begins with an introduction to the principles of system design with memristors, then goes on to address memristor logic gates, arithmetic units for adders, multipliers and dividers, and improved and optimised adder, multiplier and divider designs. The final chapters draw conclusions from the topics covered and explore potential future trends in research into system designs with memristor technologies. This book is essential reading for research scientists and electronics engineers interested in the use of memristors in future system architectures, specifically focused on the areas of arithmetic units, non-Von-Neumann architectures, and logic-in-memory.
|
You may like...
International Brigade Against Apartheid…
Ronnie Kasrils, Muff Andersson, …
Paperback
Empire Imagined - The Personality of…
Giselle Frances Donnelly
Hardcover
R2,112
Discovery Miles 21 120
Women In Solitary - Inside The Female…
Shanthini Naidoo
Paperback
(1)
The Land Is Ours - Black Lawyers And The…
Tembeka Ngcukaitobi
Paperback
(11)
|