0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups - Structural Properties and Limit Theorems... Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups - Structural Properties and Limit Theorems (Hardcover, 2001 ed.)
Wilfried Hazod, Eberhard Siebert
R3,413 Discovery Miles 34 130 Ships in 10 - 15 working days

Generalising classical concepts of probability theory, the investigation of operator (semi)-stable laws as possible limit distributions of operator-normalized sums of i.i.d. random variable on finite-dimensional vector space started in 1969. Currently, this theory is still in progress and promises interesting applications. Parallel to this, similar stability concepts for probabilities on groups were developed during recent decades. It turns out that the existence of suitable limit distributions has a strong impact on the structure of both the normalizing automorphisms and the underlying group. Indeed, investigations in limit laws led to contractable groups and - at least within the class of connected groups - to homogeneous groups, in particular to groups that are topologically isomorphic to a vector space. Moreover, it has been shown that (semi)-stable measures on groups have a vector space counterpart and vice versa. The purpose of this book is to describe the structure of limit laws and the limit behaviour of normalized i.i.d. random variables on groups and on finite-dimensional vector spaces from a common point of view. This will also shed a new light on the classical situation. Chapter 1 provides an introduction to stability problems on vector spaces. Chapter II is concerned with parallel investigations for homogeneous groups and in Chapter III the situation beyond homogeneous Lie groups is treated. Throughout, emphasis is laid on the description of features common to the group- and vector space situation. Chapter I can be understood by graduate students with some background knowledge in infinite divisibility. Readers of Chapters II and III are assumed to be familiar with basic techniques from probability theory on locally compact groups.

Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups - Structural Properties and Limit Theorems... Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups - Structural Properties and Limit Theorems (Paperback, Softcover reprint of hardcover 1st ed. 2001)
Wilfried Hazod, Eberhard Siebert
R3,125 Discovery Miles 31 250 Ships in 10 - 15 working days

Generalising classical concepts of probability theory, the investigation of operator (semi)-stable laws as possible limit distributions of operator-normalized sums of i.i.d. random variable on finite-dimensional vector space started in 1969. Currently, this theory is still in progress and promises interesting applications. Parallel to this, similar stability concepts for probabilities on groups were developed during recent decades. It turns out that the existence of suitable limit distributions has a strong impact on the structure of both the normalizing automorphisms and the underlying group. Indeed, investigations in limit laws led to contractable groups and - at least within the class of connected groups - to homogeneous groups, in particular to groups that are topologically isomorphic to a vector space. Moreover, it has been shown that (semi)-stable measures on groups have a vector space counterpart and vice versa. The purpose of this book is to describe the structure of limit laws and the limit behaviour of normalized i.i.d. random variables on groups and on finite-dimensional vector spaces from a common point of view. This will also shed a new light on the classical situation. Chapter 1 provides an introduction to stability problems on vector spaces. Chapter II is concerned with parallel investigations for homogeneous groups and in Chapter III the situation beyond homogeneous Lie groups is treated. Throughout, emphasis is laid on the description of features common to the group- and vector space situation. Chapter I can be understood by graduate students with some background knowledge in infinite divisibility. Readers of Chapters II and III are assumed to be familiar with basic techniques from probability theory on locally compact groups.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Oceans Eleven
George Clooney, Brad Pitt, … Blu-ray disc R316 Discovery Miles 3 160
Loot
Nadine Gordimer Paperback  (2)
R398 R369 Discovery Miles 3 690
MSI B450M-A PRO Max II AMD Gaming…
R1,999 R1,299 Discovery Miles 12 990
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn Paperback R280 R258 Discovery Miles 2 580
Rexel Momentum X308 Cross-Cut P3…
R2,599 R2,411 Discovery Miles 24 110
Home Classix Silicone Flower Design Mat…
R49 R40 Discovery Miles 400
Loot
Nadine Gordimer Paperback  (2)
R398 R369 Discovery Miles 3 690
Fly Repellent ShooAway (Black)(2 Pack)
R698 R578 Discovery Miles 5 780
Loot
Nadine Gordimer Paperback  (2)
R398 R369 Discovery Miles 3 690
Furrytail Clear Pet Drinking Fountain…
R899 R699 Discovery Miles 6 990

 

Partners