0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups - Structural Properties and Limit Theorems... Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups - Structural Properties and Limit Theorems (Hardcover, 2001 ed.)
Wilfried Hazod, Eberhard Siebert
R3,265 Discovery Miles 32 650 Ships in 12 - 17 working days

Generalising classical concepts of probability theory, the investigation of operator (semi)-stable laws as possible limit distributions of operator-normalized sums of i.i.d. random variable on finite-dimensional vector space started in 1969. Currently, this theory is still in progress and promises interesting applications. Parallel to this, similar stability concepts for probabilities on groups were developed during recent decades. It turns out that the existence of suitable limit distributions has a strong impact on the structure of both the normalizing automorphisms and the underlying group. Indeed, investigations in limit laws led to contractable groups and - at least within the class of connected groups - to homogeneous groups, in particular to groups that are topologically isomorphic to a vector space. Moreover, it has been shown that (semi)-stable measures on groups have a vector space counterpart and vice versa. The purpose of this book is to describe the structure of limit laws and the limit behaviour of normalized i.i.d. random variables on groups and on finite-dimensional vector spaces from a common point of view. This will also shed a new light on the classical situation. Chapter 1 provides an introduction to stability problems on vector spaces. Chapter II is concerned with parallel investigations for homogeneous groups and in Chapter III the situation beyond homogeneous Lie groups is treated. Throughout, emphasis is laid on the description of features common to the group- and vector space situation. Chapter I can be understood by graduate students with some background knowledge in infinite divisibility. Readers of Chapters II and III are assumed to be familiar with basic techniques from probability theory on locally compact groups.

Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups - Structural Properties and Limit Theorems... Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups - Structural Properties and Limit Theorems (Paperback, Softcover reprint of hardcover 1st ed. 2001)
Wilfried Hazod, Eberhard Siebert
R3,029 Discovery Miles 30 290 Ships in 10 - 15 working days

Generalising classical concepts of probability theory, the investigation of operator (semi)-stable laws as possible limit distributions of operator-normalized sums of i.i.d. random variable on finite-dimensional vector space started in 1969. Currently, this theory is still in progress and promises interesting applications. Parallel to this, similar stability concepts for probabilities on groups were developed during recent decades. It turns out that the existence of suitable limit distributions has a strong impact on the structure of both the normalizing automorphisms and the underlying group. Indeed, investigations in limit laws led to contractable groups and - at least within the class of connected groups - to homogeneous groups, in particular to groups that are topologically isomorphic to a vector space. Moreover, it has been shown that (semi)-stable measures on groups have a vector space counterpart and vice versa. The purpose of this book is to describe the structure of limit laws and the limit behaviour of normalized i.i.d. random variables on groups and on finite-dimensional vector spaces from a common point of view. This will also shed a new light on the classical situation. Chapter 1 provides an introduction to stability problems on vector spaces. Chapter II is concerned with parallel investigations for homogeneous groups and in Chapter III the situation beyond homogeneous Lie groups is treated. Throughout, emphasis is laid on the description of features common to the group- and vector space situation. Chapter I can be understood by graduate students with some background knowledge in infinite divisibility. Readers of Chapters II and III are assumed to be familiar with basic techniques from probability theory on locally compact groups.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Speck Koi Filter Medium (3 X 5mm)(40kg)
R772 Discovery Miles 7 720
BSwish Bwild Classic Marine Vibrator…
R779 R649 Discovery Miles 6 490
I Will Not Be Silenced
Karyn Maughan Paperback R350 R199 Discovery Miles 1 990
Wonka
Timothee Chalamet Blu-ray disc R250 R190 Discovery Miles 1 900
Red Elephant Horizon Backpack…
R486 Discovery Miles 4 860
Harry Potter Wizard Wand - In…
 (3)
R800 Discovery Miles 8 000
Samsung EO-IA500BBEGWW Wired In-ear…
R299 R199 Discovery Miles 1 990
ZA Pendant Decoration with Light and…
R199 Discovery Miles 1 990
Stellenbosch: Murder Town - Two Decades…
Julian Jansen Paperback R335 R288 Discovery Miles 2 880
Zap! Air Dry Pottery Kit
Kit R250 R195 Discovery Miles 1 950

 

Partners